
MARCH 1989 • V0L4 N02 • TEN DOLLARS

Exploring Vector Fonts with the OS/2
Graphics Programming Interface
Vector fonts, a series of lines and curves that can be filled and stretched or
compressed to any size and rotated to any angle, are not tied to a particular output
device. This article shows you how to work with vector fonts in GPI and uses the
VECTFONT program to demonstrate their capabilities.

rue cttscmr somic LiiMM BASIC as a Professional Programming
Language: An Interview with Ethan Winer
With Microsoft® BASIC’s support for OS/2 systems, mixed-language
programming, recursion, and structured code, BASIC is a viable choice for
developing real-world business applications. Winer discussses the technical
issues that make BASIC a suitable professional programming environment.

Organizing Data in Your C Program with
__ Structures, Unions, and Typedefs

Structures arrange data in your programs and help to keep your code readable and
maintainable. Unions and typedefs perform some of these duties, but are more
complicated and cryptic in their usage. This article is a guide to the idiosyncrasies
of structures, unions, and typedefs.

Whitewater's Actor : An Introduction to
__ Object-Oriented Programming Concepts

Actor is a pure object-oriented language. Everything in the system is an object and
all operations are performed by sending messages to objects. Objects are the
collection of both data and the operations that work on that data. Actor provides
an interpreter-based environment to explore the nature of OOP.

union {
struct {

short offset;
short segment;

} segoff;
char *ptr;

} convert;

|B 1 uel

50

|01ue?|
Ko’

Red3
jiao

100 /.I

MDI: An Emerging Standard for
Manipulating Document Windows
The Multiple Document Interface is a user interface style that supports the
viewing of multiple child document windows within an application. Both the user
interface and programming issues are detailed in this article. The main functions
of MDI have been combined in a library for use in your programs.

Hel lo , wor ld !
f ron Thread #17

1 Hello. Horld- II
| f ron Thread #18

He l lo , wor ld ! |
f ron Ih read #26 [

He l lo , wor ld ! I
[f ron Thread #19 [

L He l lo , wor ld !
| f ron Thread #13

He l lo , wor ld ! I
f ron Thread #15

I He l lo , wor ld !
[f ron Thread #21

He l lo , wor ld !
f ron Thread #22

Planning and Writing a Multithreaded
OS/2 Program with Microsoft C
Almost everybody's first C program is "Hello World." This article starts with a
simple hello.c and expands it into a complicated multithreaded program as it
examines the OS/2 multiple thread model, Microsoft C support for multithreaded
applications, and the use of RAM semaphores to coordinate thread execution.

E D JONATHAN D. LAZARUS
Editor and Publisher

•
EDITORIAL

TONY RIZZO
Technical Editor

KAREN STRAUSS
Assistant Editor

JOANNE STEINHART
Production Editor
KIM HOROWITZ
Editorial Assistant

•
ART

MICHAEL LONGACRE
Art Director

VALERIE MYERS
Associate Art Director

•
CIRCULATION

STEVEN PIPPIN
Circulation Director

L. PERRIN TOMICH
Assistant to the Publisher
JAANA NIEUWBOER
Administrative Assistant

n the September issue of MSJ, we challenged you
| to decipher a convoluted C declaration. See "A Guide to
i Understanding Even the Most Complex C Declarations,'’ MSJ
| (Vol. 3, No. 5). Recently, we received a call from a company in

Cambridge, Mass, asking for the answer to this declaration. It
II J seems the company was sponsoring an in-house programming
contest to see who could solve correctly the convoluted example from this
article. The winner would be treated to lunch in a cafe within the office
building.

Before you go digging for your September issue, or try to figure out which
colleague borrowed it and didn’t return it, here it is again:
unsigned longffar * (far * constffar * far const V[2])[4])())[6];

Are we ready to reveal the answer yet? No, we’d rather leave it as a challenge
to you, with this bit of advice: in the future we will have a three-part series
on C pointers, which you might find helpful.

In this issue, our series on advanced C programming continues with a look
at the use of structures, unions, and typedefs to organize data in your code.
Charles Petzold’s article explores the OS/2 Presentation Manager’s
(referred to here as PM) vector font capabilities, an integral part of building
graphical applications under PM. Vector fonts, which are defined as a series
of lines and curves, can be stretched or compressed to any size as well as
rotated to any angle. They are device-independent, and therefore not tied to
a particular output device resolution. Font controls that were previously
restricted to PostScript® printers are now available for other laser printers,
output devices (for example plotters), and many different types of video
displays.

One concern when building graphical applications under Windows and
Presentation Manager is the management of child windows. Kevin Welch
provides a thorough discussion of Windows’ Multiple Document Interface
(MDI), a protocol for managing child windows. The concept of MDI is
relatively simple, however, its implementation can be quite difficult. Welch
provides the reader with an MDI-based library of function calls, guaranteed
to take valuable weeks off the MDI learning curve.

Finally, because serious OS/2 and PM applications cannot be written
without a solid understanding of the OS/2 multithreaded programming
model and the related use of OS/2 semaphores, we offer an exploration of
the special requirements of multithreaded programming. —Ed.

Microsoft Systems Journal (ISSN # 0889-9932) is
published bimonthly by Microsoft Corporation at 666

Third Avenue, New York, NY 10017. Single-copy price
including first-class postage: $10.00. One-year

subscription rates: U.S., $50. Canada/Mexico, $65.
International rates available on request.Subscription

inquiries and orders should be directed to the Circulation
Department, Microsoft Systems Journal, P.O. Box 1903,

Marion, OH 44305. Subscribers in the U.S. may call
(800) 669-1002, all others (614) 382-3322 from 8:30 am
to 4:30 pm, Mon—Fri. Second-class postage rates paid

at New York, NY and additional mailing offices.
POSTMASTER: Send address changes to Circulation

Department, Microsoft Systems Journal, P.O. Box 1903,
Marion, OH 44305.

MSJ is now available on microfilm and microfiche from
University Microfilms Inc., 300 North Zeeb Road, Ann

Arbor, Ml 48106

Manuscript submissions and all other correspondence
should be addressed to Microsoft Systems Journal,
16th Floor, 666 Third Avenue, New York, NY 10017.

Copyright© 1989 Microsoft Corporation. All rights reserved;
reproduction in part or in whole without permission is prohibited.

Microsoft Systems Journals a publication of Microsoft Corporation, 16011 NE 36th
Way, Box 97017, Redmond, WA 98073-9717. Officers: William H. Gates, III,

Chairman of the Board and Chief Executive Officer; Jon Shirley, President and Chief
Operating Officer; Francis J. Gaudette, Treasurer; William Neukom, Secretary.

01Exploring Vector Fonts with
the OS/2 Graphics
Programming Interface
Charles Petzold

n et’s begin with a question: What graphics programming
language stores fonts as lines and curves (rather than bitmaps) and thus allows
fonts to be arbitrarily stretched, rotated, outlined, filled with different patterns, or
even used as clipping areas? One answer is obviously PostScript®, Adobe
Systems’ page composition language implemented on many high-end laser

printers (beginning with the Apple® LaserWriter®) and Allied Corporation’s Linotronic®
phototypesetters. Over the past few years, PostScript has become the language of choice for
computer manipulation of fonts and text.

An equally valid answer is GPI—the Graphics
Programming Interface (referred to herein as GPI)
component of the OS/2 Presentation Manager.
This article shows you how to work with vector
fonts in GPI and demonstrates many PostScript-
like techniques. As we’ll see, GPI has facilities to
do virtually everything with fonts that you can do
with PostScript. However, GPI does have a defi-
ciency that I will discuss at the end of this article.

The Trouble with Text
The display of text is always the most

problematic part of a graphics programming
system. Unlike lines and polygons (which are
merely mathematical constructs), text is rooted in
a long tradition of aesthetic typography. In any
computer graphics system, the goal must always
be to display text that is as pleasing and as easy to
read as a well-printed book. Yet, most computer
output devices (such as video displays and
printers) are digital media. The subtly shaped and
rounded characters that comprise traditional fonts must be broken down into discrete pixels for
storage and then reassembled on the output device. This often causes distortions in the appearance
of the text.

Dynamic-Link
Library File Image Fonts Vector Fonts

COURIER.FON “Courier” (8, 10, and
12 points for CGA,
EGA, VGA, and
IBM Proprinter)

“Courier”
“Courier Bold”
“Courier Italic”
“Courier Bold Italic”

HELV.FON “Helv” (8, 10, 12, 14,
18, and 24 points
for CGA, EGA, VGA,
and IBM Proprinter)

“Helv”
“Helv Bold”
“Helv Italic”
“Helv Bold Italic”

TIMES.FON “Tms Rmn” (8, 10, 12,
14, 18, and 24 points
for CGA, EGA, VGA,
and IBM Proprinter)

“Tms Rmn”
“Tms Rmn Bold”
“Tms Rmn Italic”
“Tms Rmn Bold Italic”

Figure 1 The OS/2 1.1 dynamic-link library files that contain
fonts. The font face names are shown in quotation marks.

One major advantage of using a computer for this job is versatility. We can use a wide variety
of fonts in various sizes and characteristics and modify these fonts for display. The extent to which
we can modify fonts depends on the way in which the fonts are stored in memory.

Images and Vectors
A font is generally stored in computer (or printer) memory in one of two very different ways.

First, a font can be stored as an image or bitmap. Each character of the font is simply a rectangu-
lar array of bits. The 0 bits generally correspond to the background around the character and the
1 bits correspond to the character itself. Second, a font can be stored in a vector or outline format

Charles Petzold is the author of Programming Windows (Microsoft Press, 1988) and Programming the OS/2
Presentation Manager (Microsoft Press, 1988). A copy of the latter is included in Microsoft’s OS/2 Software

Development Kit.

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 2: Code Fragment from VECTFONT.C
in which each character is defined
as a series of lines and curves that
enclose areas. The character is
displayed by drawing the outline

on the output device and filling in the
enclosed areas.

Image and vector fonts have distinct
advantages and disadvantages. Image
fonts are always created for specific font
sizes and specific device resolutions.
The size of a particular image font
cannot easily be changed. (For example,
enlarging an image font by doubling the
rows and columns of pixels often
emphasizes the jaggedness of the
characters.) Also, image fonts cannot be
rotated except possibly by 90 degree
increments.

Vector fonts are much more
malleable. Because they are defined as a
series of lines and curves, vector fonts
can be stretched or compressed to any
size and can be rotated to any angle.
Vector fonts are not tied to a particular
output device resolution.

In general, however, image fonts are
more legible than vector fonts. Various techniques are used to
design image fonts so they fool the eye into thinking the
characters are smoother than they actually are. Vector fonts—
particularly when displayed on low-resolution devices and
scaled to small font sizes—can be adjusted only by mathemat-
ical algorithms, which currently are less capable than human
font designers. Another advantage of image fonts is per-
formance since vector fonts usually require much more
processing time to draw each character.

Most conventional laser printers store fonts as images, either
within the printer or in font cartridges. The printer is restricted
to specific font sizes and the characters cannot be arbitrarily
rotated. Much more versatile are the fonts stored in PostScript-
based printers. These fonts are stored as vectors. PostScript
fonts can be stretched or compressed to any size, they can be
arbitrarily rotated, filled with various patterns, and used for
clipping.

The GPI Fonts
GPI can, of course, take advantage of fonts that are stored in

and supported by output devices such as laser printers. But it
also includes its own support of both image and vector fonts.
The image fonts are expected because they are particularly
suited for low-resolution video displays and dot matrix
printers. Image fonts are an important part of most graphics
programming systems (such as Microsoft Windows GDI).

The addition of vector fonts in GPI is a real treat. GPI can use
these vector fonts with any output device. Thus, various font
techniques that previously have been restricted to PostScript
printers are now possible with other laser printers and even the
video display.

02 case WM_CREATE:
hdc = WinOpenWindowDC (hwnd) ;

// Create PS use Twips page units
sizl.cx = 0 ;
sizl.cy « 0 ;
hps = GpiCreatePS (hab, hdc, &sizl,

PUJTWIPS I GPIF-DEFAULT |
GPIT_MICRO | GPIA_ASSOC) ;

// Adjust Page Viewport for points

GpiQueryPageViewport (hps, &rcl) ;
rcl.xRight *=20 ;
rcl.yTop *=20 ;
GpiSetPageViewport (hps, &rcl) ;

hwndMenu = WinWindowFromID (
WinQueryWindow (hwnd, QW_PARENT,

FALSE), FID_MENU) ;
return 0 ;

case WM_SIZE:
ptlClient.x = SHORT1FROMMP (mp2) ; // client width
ptlClient.y = SHORT2FROMMP (mp2) ; // client height

GpiConvert (hps, CVTC_DEVICE, CVTC_PAGE, 1L, &ptlClient);
return 0 ;

OS/2 Version 1.1 is shipped with three resource-only dynam-
ic-link libraries with FON extensions. These are font files and
the contents are shown in Figure 1. In addition, the video display
(DISPLAY.DLL) and printer device drivers may also contain
fonts designed specifically for the device. For example, the
default System Proportional font is stored in DISPLAY.DLL.

If you want to use any of the fonts in the FON files, you must
install the fonts from the Presentation Manager Control Panel
program. It is only necessary to install one font from each of the
three files, and you only need do this once.

Each font has a face name, which is shown in quotation marks
in Figure 1 . Each of the image fonts is available in several point
sizes and for several output devices: the CGA, EGA, VGA (and
85 14/A), and IBM® Proprinter. GPI can synthesize variations of
these fonts, such as italic or boldfaced versions. Vector fonts,
however, need not be designed for a particular output device and
point size because they can be arbitrary scaled. You’ll note that
italic and boldface versions of the vector fonts are also included.

The vector fonts in GPI are similar in style to the Courier,
Helvetica®, and Times® fonts included in most PostScript
printers.

A little exploration of the font files will reveal that vector fonts
are encoded as a series of GPI drawing orders. When drawing
text with these fonts, GPI translates the drawing orders into GPI
functions, usually GpiPolyLine to draw straight lines and
GpiPolyFilletSharp to draw curves.

The VECTFONT Program
The VECTFONT program demonstrates the use of GPI vector

fonts. For purposes of clarity, I’ve divided the program into
several modules. The files that comprise the basic shell of the

MARCH 1989

03
♦define INCL_GPI
♦include <os2.h>
♦include <string.h>
♦include "vectfont.h"

VOID Display_24Point (HPS hps, LONG cxClient, LONG cyClient)
{
static CHAR *szFacenaxne[] = {

"Courier",
"Courier Bold",
"Tins Rmn",
"Ims Rmn Bold",
"Helv",
"Helv Bold",
} ;

static INT iNumFonts = sizeof szFacename /
FONTMETRICS fm ;
INT iFont ;
POINTL ptl ;

ptl.x = cxClient / 8 ;
ptl.y = cyClient ;

for (iFont = 0 ; iFont < iNumFonts ; iFont++)
{

// Create font, select it and scale

CreateVectorFont (hps, LCIDJMYFONT, szFacename[iFont]) ;
GpiSetCharSet (hps, LCID_MYFONT) ;
ScaleVectorFont (hps, 240, 240) ;

// Get font metrics for scaled font

GpiQueryFontMetrics (hps, (LONG) sizeof (FONTMETRICS), &fm) ;
ptl.y -» fm.iMaxBaselineExt ;

// Display the font facename

GpiCharStringAt (hps, &ptl, (LONG) strlen (szFacename[iFont]),
szFacename[iFont]) ;

GpiCharString (hps, 10L, " - abcdefg") ;

GpiSetCharSet (hps, LCID_DEFAULT) ; // Clean up
GpiDeleteSetld (hps, LCID_MJfFONT) ;

}

"Courier Italic",
"Courier Bold Italic",
"Tms Rmn Italic",
"Tms Rmn Bold Italic",
"Helv Italic",
"Helv Bold Italic"

sizeof szFacename[0] ;

- abcdefg

Courier Bold I tai i o -
Tms Rum - abcdefg
Tms Rmn Italic - abcdefg
Tins Rum Bold - abcdefg
Tms Rmn Bold Italic - abcdefg
Helv - abcdefg
Helv Italic - abcdefg
Helv Bold - abcdefg
Helv Bold Italic - abcdefg

Figure 3
The GPI vector fonts
in 24-point size,
displayed by
selecting 24 Point
Fonts from the
VECTFONT menu.

=1 : '
Display

_____W< Di
VF02.C — Display vector font stretched to client window

♦define INCLJ3PI
♦include <os2.h>

♦include "vectfont.h"Hello! VOID Display_Stretch (HPS hps, LONG cxClient, LONG cyClient)

{
static CHAR szText[] « "Hello!" ;
static LONG cbText » sizeof szText - 1 ;
POINTL ptl ;

// Create font, select, and scale

CreateVectorFont (hps, LCID_MYFONT, "Tms Rmn Italic") ;
GpiSetCharSet (hps, LCID_MYFONT) ;
ScaleFontToBox (hps, cbText, szText, cxClient, cyClient) ;
QueryStartPointInTextBox (hps, cbText, szText, &ptl) ;

GpiCharStringAt (hps, &ptl, cbText, szText) ; // Display text

GpiSetCharSet (hps, LCID__DEFAULT) ; // Clean up
GpiDeleteSetld (hps, LCID_MYFONT) ;

}

Figure 4__________ A vector font strectched to fill the
client window, displayed by selecting
Stretched Font from the VECTFONT menu.

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

probably want to use a second thread of execution to avoid
holding up message processing.

Selecting an Outline Font
To use an outline font in a Presentation Manager program, you

must first create a logical font and then select the font into your
presentation space. The GpiCreateLogFont function creates a
logical font and associates the font with a local ID (a number
between IL and 254L that you select). This function requires a
pointer to a structure of type FATTRS (font attributes) that
specifies the attributes of the font you want.

To create a vector font, most of the fields in this structure can
be set to zero. The most important fields are szFacename (which
is set to the face name of the font, one of the names in the
last column of Figure 1) and fsFontUse, which is set to the
constant identifiers FATTR_FONTUSE_OUTLINE and
FATTR_FONTUSE_TRANSFORMABLE, combined with
the C bitwise OR operator.

You may prefer using the CreateVectorFont function in
VFOO.C to create a vector font. This function requires only the
presentation space handle, the local ID, and the face name:

CreateVectorFont(hps, Icid, szFacename);

After you create a logical font (using either GpiCreateLogFont
or CreateVectorFont), you can select the font into the present-
ation space:

GpiSetCharSet(hps, Icid);

program are VECTFONT, VECTFONT.LNK,
VECTFONT.DEF, VECTFONT.H, and VECTFONT.C.
(These files are not shown here, but can be downloaded
from any of our bulletin boards—Ed.) Figure 2 shows the

code fragment from VECTFONT.C that is responsible for
creating a PS, and for sizing client windows.

The VECTFONT Display menu lists 16 options. The first
option (to display nothing) is the default. The other 15 options
correspond to routines in the VF01.C through VF15.C files
(described below). The VFOO.C file (not shown here) contains
some helper functions used by the routines in VF01.C
through VF15.C.

VECTFONT creates a micro presentation space during the
WM_CREATE message using page units of PU_TWIPS.
(Twips is a fabricated word standing for 20th of a point. A
printer’s point size is 772 inch, so page units correspond to 71440

inch.) VECTFONT then modifies the page viewport rectangle
so that a page unit corresponds to 1 point, which is the default
coordinate system in PostScript.

Although VECTFONT displays output to the screen, vector
fonts are obviously better suited for laser printers. As you will
see, the appearance of the fonts—even at 24 point sizes—is not
nearly as good as the image fonts.

You will also notice that several of the demonstration
routines in VECTFONT require a few seconds to run. For
anything other than a demonstration program, you would

04

The Icid parameter is the local ID for the
font. After the font is selected in the pre-
sentation space, you can alter the attri-
butes of the font with various functions
described below, obtain information about
the font by calling GpiQueryFontMetrics,
Gp iQueryWid thTab le , and
GpiQueryTextBox; and use the font for
text output with one of the text functions
such as GpiCharStringAt.

/*--
VF03.C — Display four strings in mirror reflections

-- */

#define INCL_GPI
#include <os2.h>
#include "vectfont.h"

VOID Display_Mirror (HPS hps, LONG cxClient, LONG cyClient)
{
static CHAR szText[] = "Mirror" ;
static LONG cbText = sizeof szText - 1 ;
INT i ;
POINTL ptl ;
SIZEF sizfx ;

// Create font, select and scale

CreateVectorFont (hps, LCID_MYFONT, "Tms Rmn Italic") ;
GpiSetCharSet (hps, LCID_MYFONT) ;
ScaleFontToBox (hps, cbText, szText, cxClient / 2, cyClient I 2) ;

ptl.x = cxClient / 2 ; // Center of client window
ptl.y = cyClient / 2 ;

for (i = 0 ; i < 4 ; i++)
{
GpiQueryCharBox (hps, &sizfx) ;

if (i - 1 || i == 3)
sizfx.ex *= -1 ;

// Negate char box dimensions
if (i = 2)

sizfx.cy *= -1 ;

GpiSetCharBox (hps, &sizfx) ;

GpiCharStringAt (hps, &ptl, cbText, szText) ;
)

GpiSetCharSet (hps, LCID_DEFAULT) ; // Clean up
GpiDeleteSetld (hps, LCID_MYFONT) ;

)

Display _________________

Figure 5 Vector font with positive
and negative character box values,
displayed by selecting Mirrored Font
from the VECTFONT menu.

MARCH 1989

.EXE -Vector Foot Demo 0 l<X>
Display and height in page units. The

default character box is based
on the size of the default system
fon t . You can change the
cha rac t e r box s i ze by ca l l i ng
GpiSetCharBox.

An important point to note is that to
get a correctly proportioned vector font,
you must change the character box size.
Do not use the default. Generally you
set the height of the character box to the
desired height of the font. If you want a
vector font to have a normal width, set
the width of the character box equal to
the height. For a skinnier font, set the
width of the character box less than the
height; for a fatter font, set the width
greater than the height.

If you’re working in page units of
PU_PELS, you must also adjust the
character box dimensions to account for
differences in horizontal and vertical
resolution of the output device. For this
reason, it’s much easier to work with
vector fonts if you use one of the metric
page un i t s (PU_LOENGLISH,
PU_HIENGLISH, PU.LOMETRIC,
PU_HIMETRIC, or PU_TWIPS). With
these page units, horizontal and vertical
page units are the same. For example,
suppose you’re using page units of
PU_TWIPS. This means that one page
unit is equal to 720 of a point or 71440 inch.
After selecting a vector font into the
presentation space, you want to scale
the font to 24 points. You first define a
structure of type SIZEF:

SIZEF sizfx;

The two fields of this structure, named
ex and cy, are interpreted as 32-bit
FIXED numbers; that is, the high 16 bits
are interpreted as an integer, and the low
16 bits are interpreted as a fraction.

If you want to scale the vector font to a 24-point height, you
can use the MAKEFIXED macro to set to the fields of the
structure like this:

sizfx.ex = MAKEFIXED(24 * 20, 0);
sizfx.cy = MAKEFIXED(24 * 20, 0);

Multiplying by 20 is necessary to convert the point size you
want to twips. Then call GpiSetCharBox:

GpiSetCharBox(hps, &sizfx);

After setting the character box, any character or text
d imens ions you obtain from GpiQueryFontMetr ics ,
GpiQueryTextBox, and GpiQueryWidthTable will reflect the
new font size.

The ScaleVectorFont routine in VF00.C can help in scaling

05

Figure 6
Vector fonts
at eight
character
angles,
displayed by
selecting
Character
Angles from
the
VECTFONT
menu.

VOID Display_CharAngle (HPS hps, LONG cxClient, LONG cyClient)
{
static GRADIENT! agradl[8] « { 100, 0, 100, 100,

0, 100, -100, 100,
-100, 0, -100, -100,

0, -100, 100, -100 } ;
CHAR szBuffer[40] ;
INT iIndex ;
POINT! ptl ;

// Create Helvetica font

CreateVectorFont (hps, LCID_MIFONT, "Helv") ;
GpiSetCharSet (hps, LCID_MYFONT) ;
ScaleVectorFont (hps, 200, 200) ;

ptl.x - cxClient / 2 ; // Center of client window
ptl.y « cyClient / 2 ;

for (ilndex « 0 ; ilndex < 8 ; ilndex+t)
{
GpiSetCharAngle (hps, agradl + ilndex) ; // Char angle

GpiCharStringAt (hps, &ptl,
(LONG) sprintf (szBuffer, " Character Angle (%ld, %ld)",

agradl[ilndex].x, agradl[ilndex].y),
szBuffer) ;

}
GpiSetCharSet (hps, !CID_DEFAU!T) ; // Clean up
GpiDeleteSetld (hps, LCID MYFONT) ;
)

A
ng

le
 (0

,1
00

)

A
ngle (0-1

00)

/*---
VF04.C — Display eight character angles
---*/

fdefine INCL_GPI
#include <os2.h>
#include <stdio.h>
#include "vectfont.h"

When you no longer need the font, you reselect the default
font into the presentation space:

GpiSetCharSet(hps, LCID_DEFAULT);

and then delete the local ID associated with the font:

GpiDeleteSetld(hps, Icid);

In VECTFONT I always use the identifier LCID_MYFONT
for the local ID. This is defined in VECTFONT.H as IL.

Scaling to a Point Size
When you call GpiSetCharSet to select a vector font into the

presentation space, the initial width and height of the font are
based on the GPI character box, which defines a character width

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

font, set the third parameter to ScaleVectorFont equal to the
second parameter.

The VF01.C file in Figure 3 shows how the functions dis-
cussed so far can be used to display all the available vector fonts
in 24-point size. You can run the function in VF01.C by select-

ing the 24 Point Fonts option from the
VECTFONT Display menu. The source
code and its results are shown in Figure 3.

Arbitrary Stretching
Besides scaling the vector font to a

specific point size, you can also scale
vector fonts to fit within an arbitrary
rectangle. For example, you may want to
scale a short text string to fill the client
window.

The function shown in VF02.C (see
Figure 4) shows how this is done. You
can run this function by selecting
Stretched Font from VECTFONT’s
menu. The function in VF02.C displays
the word “Hello!” in the Tms Rmn Italic
font stretched to the size of the client
window.

The ScaleFontToBox function in
VF00.C helps out with this job. This
function first calls GpiQueryTextBox to
obtain the coordinates of a parallelo-
gram that encompasses the text string.
The character box is then scaled based
on the size of this text box and the rect-
angle to which the font must be
stretched. The QueryStartPointlnTextBox
function in VF00.C determines the start-
ing point of the text string (that is, the
point at the baseline of the left side of the
first character) within this rectangle.

a vector font to a desired point size. The function will
work with any page units, even PU_PELS. The second
and third parameters to ScaleVectorFont specify a point
size in units of 0.1 points. (For example, use 240 for a

24-point size.) If you want a normally proportioned vector

06

VF05.C — Display "Hello, World" in circle
-- */

#define INCL_GPI
#include <os2.h>
#include <math.h>
#include <stdlib.h>
#include "vectfont.h"

VOID Display_Rotate (HPS hps, LONG cxClient, LONG cyClient)

{
static CHAR szText[] = "Hello, world’ " ;
static LONG cbText = sizeof szText - IL ;
static LONG alWidthTable[256] ;
double ang, angCharWidth, angChar ;
FONTMETRICS fm ;
GRADIENT! gradl ;
INT iChar ;
LONG ICircum, IRadius, ITotWidth, ICharRadius, cyChar ;
POINT! ptl ;

// Create the font and get font metrics

CreateVectorFont (hps, LCID_MYFONT, "Tms fam") ;
GpiSetCharSet (hps, LCID_MYFONT) ;

GpiQueryFontMetrics (hps, (LONG) sizeof fm, &fm) ;

// Find circle dimensions and scale font

IRadius = min (cxClient / 4, cyClient / 4) ;
ICircum = (LONG) (2 * PI * IRadius) ;
CyChar — fm.IMaxBaselineExt * IRadius / fm.IMaxAscender ;

ScaleFontToBox (hps, cbText, szText, ICircum, cyChar) ;

// Obtain width table and total width

GpiQueryWidthTable (hps, OL, 256L, alWidthTable) ;

for (ITotWidth = 0, iChar = 0 ; iChar < (INT) cbText ; iChar ++)
ITotWidth += alWidthTable [szText [iChar]] ;

ang = PI / 2 ; // Initial angle for first character

for (iChar = 0 ; iChar < (INT) cbText ; iChar++)
{

// Set character angle

angCharWidth = 2 * PI * alWidthTable [szText [iChar]] / ITotWidth ;

=»!
Display

gradl.x « (LONG) (IRadius * cos (ang - angCharWidth / 2 - PI / 2)) ;
gradl.y = (LONG) (IRadius * sin (ang - angCharWidth / 2 - PI / 2)) ;

GpiSetCharAngle (hps, igradl) ;

// Find position for character and display it

angChar = atan2 ((double) alWidthTable [szText [iChar]] / 2,
(double) IRadius) ;

ICharRadius = (LONG) (IRadius / cos (angChar)) ;
angChar += ang - angCharWidth / 2 ;

ptl.x = (LONG) (cxClient / 2 + ICharRadius * cos (angChar)) ;
ptl.y « (LONG) (cyClient / 2 + ICharRadius * sin (angChar)) ;

GpiCharStringAt (hps, &ptl, IL, szText + iChar) ;

ang -= angCharWidth ;
}

GpiSetCharSet (hps, LCID_DEFAULT) ; // Clean up
GpiDeleteSetld (hps, LCID_MYFONT) ;
}

Figure 7 Character string
displayed around the perimeter of a
circle, displayed by selecting
Rotated Font from the VECTFONT
menu.

MARCH 1989

07Figure 8 There is nothing
wrong with your monitor.
These examples of character
shear are displayed by
selecting Character Shear
from the VECTFONT menu.

VF06.C — Display seven different character shear angles

#define INCL_GPI
tfinclude <os2.h>
#include <stdio.h>
tinclude "vectfont .h"

Display_CharShear (HPS hps, LONG cxClient, LONG cyClient)
i
static POINTL aptlShear[7] » { -100, 41, -100, 100,

-41, 100, 0, 100,
41, 100, 100, 100,

100, 41 }
CHAR szBuffer[40]
FONTMETRICS fm ;
INT ilndex ;
POINTL ptl ;

VOID

HIM
Display

Character Shear (0,100)
Character Shear (41,100)

// Create and scale Helvetica font

CreateVectorFont (hps, LCID_MYFONT, "Helv") ;
GpiSetCharSet (hps, LCID_MYFONT) ;
ScaleVectorFont (hps, 480, 480) ;

// Get font metrics for scaled font

GpiQueryFontMetrics (hps, (LONG) sizeof (FONTMETRICS), &fm) ;

ptl.x = cxClient / 8 ;
ptl.y « cyClient ;

for (ilndex = 0 ; ilndex < 7 ; ilndex++)

Interface: An Introduction to Coor-
dinate Spaces,” MSJ (Vol. 3, No. 4),
affect vector fonts in the same way they
affect the display of other graphics
primitives.

In addition, GPI also supports several
functions specifically for performing
transforms on vector fonts. We’ve
already seen how the GpiSetCharBox
function allows font characters to be
scaled. The GpiSetCharAngle rotates

the font characters and the GpiSetCharShear performs x shear.

GpiSetCharShear (hps, aptlShear + ilndex) ; // Char shear

ptl.y -* fm.IMaxBaselineExt ;

GpiCharStringAt (hps, &ptl,
(LONG) sprintf (szBuffer, "Character Shear (%ld, %ld)’’,

aptlShear[ilndex].x, aptlShear[ilndex].y),
szBuffer) ;

// Clean upGpiSetCharSet (hps, LCID_DEFAULT) ;
GpiDeleteSetld (hps, LCIDJMYFONT) ;

This point is used in the GpiCharStringAt function to display
the text.

Mirror Images
The character box, besides scaling the font to a particular size,

can also flip the characters around the horizontal or vertical axis.
If the character box height (the cy field of the SIZEF struc-

ture) is negative, the characters will be flipped around the base-
line and displayed upside down. If the character box width (the
ex field) is negative, the individual characters will be flipped
around the vertical axis. Moreover, GpiCharStringAt will draw
a character string from right to left. It’s as though the whole
character string is flipped around the vertical line at the left side
of the first character.

The function in VF03.C (see Figure 5) displays the same
string four times, using all possible combinations of negative
and positive character box dimensions. You can run this func-
tion by selecting Mirrored Font from the VECTFONT menu.

Transformations
Unlike image fonts, vector fonts can be scaled to any size and

sheared and rotated to any angle. The matrix transforms
described in my article “OS/2 Graphics Programming

Character Angle and Rotation
By default, the baseline of the vector font characters is

parallel to the x axis in world coordinates. You can change this
by calling GpiSetCharAngle. This rotates the vector font’s
characters.

The character angle is specified using a GRADIENTL struc-
ture, which has two fields named x and y of type LONG.
Imagine a line connecting the point (0,0) to the point (x,y) in
world coordinates. The baseline of each character is parallel to
this line. The direction of the text is the same as the direction
from (0,0) to (x,y).

You can also think of this in trigonometric terms. The base-
line of the text is parallel to a line at angle a measured count-
erclockwise from the x axis, where:

a = arctan (y/x)

and y and x are the two fields of the GRADIENTL structure.
The absolute magnitudes of y and x are not important. What’s

important are the relative magnitudes and signs. The signs of x
and y determine the direction of the text string as indicated in the

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

following table:

x y Direction

+ + To upper right
+ To upper left

To lower left
+ - To lower right

The function in VF04.C (see Figure 6)
uses the GpiSetCharAngle function to
display eight text strings at 45 degree
increments around the center of the
client window. Each string displays the
fields of the GR ADIENTL structure that
is used in the GpiSetCharAngle call.

In this example, the text strings begin
with a blank character so as not to make
a mess of overlapping characters in the
center of the client window. The
character angle does not affect the
interpretation of the starting position of
the s t r i ng spec i f i ed in the
GpiCharStringAt function. If you move
your head so that a particular string is
seen as running left to right, the starting
position still refers to the point at the
baseline of the left side of the first
character.

You can make the characters in a text
string follow a curved path by
individually calculating the starting
position angle of each character and
displaying the characters one at a time.
This is what is done in VF05.C (see
Figure 7) to display “Hello, World!”
around the perimeter of a circle.

The text string is scaled based on the
circumference of a circle that is
positioned in the center of the window
and has a diameter half the width or
height (whichever is less) of the
window. The GpiQueryWidthTable
function is used to obtain the width of
individual characters and then space them around the circle.

Character Shear
It is easy to confuse the character angle with the character

shear. Let’s look at the difference. The character angle refers to
the orientation of the baseline. As you can see in Figures 6 and
7, text displayed with various character angles is rotated but
otherwise not distorted in any way.

The character shear affects the appearance of the characters
themselves apart from any rotation. Character shear by itself
bends characters to the left or right, but the bottom of each
character remains parallel to the x axis. You can use character
shear to create oblique (sometimes mistakenly called italic)
versions of a font.

08

/* ---
VF07.C — Display characters with sheared shadow
---★/

tdefine INCL_GPI
tinclude <os2.h>
#include "vectfont.h"

VOID Display_Shadow (HPS hps, LONG cxClient, LONG cyClient)

{
static CHAR szText[] = "Shadow" ;
static LONG cbText = sizeof szText - 1 ;
POINTL ptl, ptlShear ;
SIZEF sizfx ;

CreateVectorFont (hps, LCID_MYFONT, "Tms Rmn Italic") ;
GpiSetCharSet (hps, LCID_MYFONT) ;
ScaleFontToBox (hps, cbText, szText, 3 * cxClient / 4, cyClient) ;
QueryStartPointlnTextBox (hps, cbText, szText, &ptl) ;

ColorClient (hps, cxClient, cyClient, CLR_BLUE) ;

GpiSavePS (hps) ;

ptlShear.x » 200 ; // Set char shear
ptlShear.y = 100 ;
GpiSetCharShear (hps, iptlShear) ;

GpiQueryCharBox (hps, &sizfx) ;
sizfx.cy += sizfx.cy / 4 ; // Set char box
GpiSetCharBox (hps, &sizfx) ;

GpiSetColor (hps, CLR_DARKBLUE) ;
GpiCharStringAt (hps, 4ptl, cbText, szText) ; If Display shadow

GpiRestorePS (hps, -1L) ;

GpiSetColor (hps, CLR—RED) ;
GpiCharStringAt (hps, &ptl, cbText, szText) ; // Display text

GpiSetCharSet (hps, LCID_DEFAULT) ; // Clean up
GpiDeleteSetld (hps, LCID_MYFONT) ;
)

Figure 9
Character shear used

to draw a shadow of a
character string,
displayed by selecting
Font with Shadow
from the VECTFONT
menu.

To set character shear you call the GpiSetCharShear function.
This function requires a pointer to a structure of type POINTL,
which has two fields named x and y. Imagine a line drawn from
(0,0) to the point (x,y) in world coordinates. The left and right
sides of each character are parallel to this line.

The function shown in in VF06.C (see Figures) displays seven
text strings using different character shears. You can run this
function by selecting Character Shear from the VECTFONT
menu. Each string displays the x and y values used in the
POINTL structure to set the character shear.

The character shear is governed by the relative magnitudes
and signs of the x and y fields of the POINTL structure. If the
signs of both fields are the same, then the characters tilt to the
right; if they are different, the characters tilt to the left. The
character shear does not flip the characters upside down. For

MARCH 1989

to calling any of these three functions, you can call
GpiModifyPath, which I’ll describe toward the end of
this article.

Normally, GpiCharStringAt and the other text output
functions are not valid in a path bracket. The exception is when
a vector font is selected in the presentation space. When called
from within a path bracket, GpiCharStringAt does not
draw the text string. Instead, the outlines of the characters
become part of the path.

Paths opens up a whole collection of PostScript-like stylistic
techniques that you can use with vector fonts.

Hollow Characters
Let’s begin by calling GpiCharStringAt in a path bracket and

then use GpiStrokePath to draw the lines of the path.
GpiStrokePath has the following syntax:

GpiStrokePath(hps, idPath, 0L);

In the initial version of the Presentation Manager, the last
parameter of the function must be set to 0L. When used to stroke
a path created by calling GpiCharStringAt, only the outline is
drawn and not the interiors. This creates hollow characters.

The function in VF08.C (see Figure 10) uses this technique to
display the outline of the characters in the text string Hollow.
You can run this function by selecting Hollow Font from the
VECTFONT menu.

You may want to display characters in one color with an
outline of another color. In this case, you must call
GpiCharStringAt twice, first to draw the interior in a specific
color and second, in a path bracket followed by a GpiStrokePath
call to draw the outline. The function in VF09.C (see Figure 11)
does something like this to draw text with a drop shadow.

The shadow is drawn first using a normal GpiCharStringAt
call. Another GpiCharStringAt function draws the text again in
the current window background color at a 76-inch offset to the
first string. This is surrounded by an outline created by a third
GpiCharStringAt call in a path bracket followed by
GpiStrokePath.

Quite similar to this is the creation of characters that look like
solid blocks, as shown in the function in VF10.C (see Figure12).
Eighteen character strings are drawn at 1-point offsets using
CLR_DARKGREEN. This is capped by the character string
drawn again in CLR_GREEN and the border in
CLR_DARKGREEN.

09example, character shear using the point (100,100) has the same
effect as (-100,-100).

The angle of the left and right sides of the characters from the
y axis is sometimes called the shear angle. In theory, the shear
angle can range to just above -180 degrees (infinite left shear)
to just under +180 degrees (infinite right shear) and is equal to

a = arctan (x/y)

where x and y are the two fields of the POINTL structure.
When you set a nondefault character shear, the

GpiQueryTextBox function returns an array of points that
define a parallelogram rather than a rectangle. However, the top
and bottom sides of this text box are the same width as for a
nonsheared text string, and the distance between the top and
bottom sides also remains the same.

You can use character shear to draw an oblique shadow of a
text string. The function in VF07.C (see Figure 9) colors the
background of the client window blue and displays the text
string Shadow twice.

The first call to GpiCharStringAt displays the shadow. This
is drawn in dark blue using a positive character shear. The
second call to GpiCharStringAt draws the characters upright in
red with a slightly smaller character box height. You can run
this function by selecting Font with Shadow from the
VECTFONT menu.

A Primer on Paths
To explore more capabilities of vector fonts, it’s necessary to

become familiar with the GPI path, which is similar to a
PostScript path. In GPI, you create a path by calling line
drawing functions between calls to the GpiBeginPath and
GpiEndPath functions:

GpiBeginPath(hps, idPath);
<... call line drawing functions ... >

GpiEndPath (hps) ;

This is called a path bracket. In OS/2 1.1, idPath must be set
equal to IL. The functions that are valid within a path bracket
are listed in the documentation of the Presentation Manager
functions.

The functions you call within the path bracket do not draw
anything. Instead, the lines that make up the path are retained by
the system. Often the lines you draw in a path will enclose areas,
but they don’t have to.

After the GpiEndPath call, you can do one of three things with
the path you’ve created:

• Call GpiStrokePath to draw the lines that comprise the path.
These lines are drawn using the geometric line width joins,
and ends (discussed shortly).

• Call GpiFillPath to fill enclosed areas defined by the path.
Any open areas are automatically closed. The area is filled
with the current pattern.

• Call GpiSetClipPath to make the enclosed areas of the path
a clipping area. Any open areas are automatically closed.
Subsequent GPI calls will only display output within the
enclosed area defined by the path.

Each of these three functions causes the path to be deleted. Prior

Filling the Path
When first introducing paths, I mentioned that you can do one

of three things with a path: stroke it, fill it, or use it for clipping.
Let’s move on to the second; filling the path.

To fill a path, you call:
GpiFillPath(hps, idPath, lOption);

This fills the path with the current pattern. Any open areas of the
path are automatically closed before being filled. The lOption
parameter can be either FPATH_ALTERNATE or
FPATH_WINDING to fill the path using alternate or winding
modes. For vector fonts, FPATH_WINDING causes the

MARCH 1989

MICROSOFT
SYSTEMS
JOURNALIW

interiors of some letters (such as
O) to be filled. You’ll probably
want to use FPATHALTERNATE
instead.

If the current area filling pattern is
PATSYM_SOLID, the code

GpiBeginPath(hps, idPath);
GpiCharStringAt(hps, &ptl,

cch, szText);
GpiEndPath(hps);
GpiFillPath(hps,idPath,

FPATH_ALTERNATE);

does roughly the same thing with a
vector font as does a GpiCharStringAt
by itself. When using GpiFillPath you
will want to set a pattern other than
PATSYM_SOLID. (A bug in OS/2 1.1
causes the current pattern to be reset to
PATSYM_SOLID during a path
bracket in which GpiCharStringAt is
called. You can get around this bug by
calling GpiSetPattem after you end the
path.)

The function in VF11.C (see Figure
13) uses GpiFillPath to display the text
string Fade eight times filled with the
e igh t GPI shad ing pa t t e rns
(P ATS YM.DENSE 1 t h rough
PATSYM_DENSE8) and then finishes
by calling GpiCharStringAt outside of a
path bracket. You can run this function

10

by selecting Fading Font from the
VECTFONT menu.

Figure 10
Hollow characters,
displayed by selecting
Hollow Font from the
VECTFONT menu.

/* ------- ----------------------
VF08.C *•* Hollow font

-------------------------★/

♦define INCL_GPI
♦include <os2.h>
♦include "vectfont.h"

VOID Display_Hollow (HPS hps, LONG cxClient, LONG cyClient)

{
static CHAR szText[] = "Hollow" ;
static LONG cbText « sizeof szText - 1 ;
POINTL ptl ;

CreateVectorFont (hps, LCID_MYFONT, "Tms Rmn Italic") ;
GpiSetCharSet (hps, LCID_MYFONT) ;
ScaleFontToBox (hps, cbText, szText, cxClient, cyClient) ;
QueryStartPointlnTextBox (hps, cbText, szText, &ptl) ,*

GpiBeginPath (hps, ID_PATH) ;
GpiCharStringAt (hps, &ptl, cbText, szText) ; // Text in path
GpiEndPath (hps) ;

GpiStrokePath (hps, ID_PATH, 0L) ; // Stroke path

GpiSetCharSet (hps, LCID_DEFAULT) ; ff Clean up
GpiDeleteSetld (hps, LCID__MYFONT) ;

VF09.C — Font with Drop Shadow
-----------------------------------*/

Geometrically Thick Lines
At first, it may seem as though there is

no difference between drawing a line

♦define INCL_GPI
♦include <os2.h>
♦include "vectfont.h"

VOID DisplayJDropShadow (HPS hps, LONG cxClient, LONG cyClient)

{
static CHAR szText[] = "Hello?" ;
static LONG cbText = sizeof szText - 1 ;
POINTL ptl ;

CreateVectorFont (hps, LCIDJMYFONT, "Tms Rmn Italic") ;
GpiSetCharSet (hps, LCID_MYFONT) ;
ScaleFontToBox (hps, cbText, szText, cxClient, cyClient) ;
QueryStartPointlnTextBox (hps, cbText, szText, &ptl) ;

GpiCharStringAt (hps, Sptl, cbText, szText) ; fl Shadow

ptl.x -= 12 ; // 1/6 inch
ptl.y += 12 ;

GpiSetColor (hps, CLR_BACKGROUND) ;
GpiCharStringAt (hps, &ptl, cbText, szText) ; // Text string

GpiBeginPath (hps, ID_PATH) ;
GpiCharStringAt (hps, &ptl, cbText, szText) ; // Outline
GpiEndPath (hps) ;

GpiSetColor (hps, CLR_NEUTRAL) ;
GpiStrokePath (hps, ID_PATH, 0L) ;

GpiSetCharSet (hps, LCID_DEFAULT) ; // Clean up
GpiDeleteSetld (hps, LCID_MYFONT) ;

}

Figure 11 Characters with a drop
shadow, displayed by selecting
Drop Shadow Font from the
VECTFONT menu.

MARCH 1989

/*------------------------------
VF10.C — Solid block font

------------------------------*/

♦define INCL_GPI
#include <os2.h>
♦include "vectfont.h"

VOID Display Block (BPS bps, LONG cxClient, LONG cyClient)
{
static CHAR szText[] - " Block " ;
static LONG cbText = sizeof szText - 1 ;
INT i ;
POINTL ptl ;

CreateVectorFont (bps, LCID_MYFONT, "Tms Rmn Italic”) ;
GpiSetCbarSet (bps, LCIDJMYFONT) ;
ScaleFontToBox (bps, cbText, szText, cxClient, cyClient) ;
QueryStartPointlnTextBox (bps, cbText, szText, &ptl) ;

ColorClient (bps, cxClient, cyClient, CLR_WHITE) ;
GpiSetColor (bps, CLR_DARKGREEN) ; ~

for (i = 0 ; i < 18 ; i++)
{
GpiCharStringAt (bps, fiptl, cbText, szText) ; // Block

ptl.x -- 1 ;
ptl.y — 1 ;
}

GpiSetColor (bps, CLR_GREEN) ;
GpiCharStringAt (bps, &ptl, cbText, szText) ; // Text string

GpiBeginPath (bps, ID_PATH) ;
GpiCharStringAt (bps, &ptl, cbText, szText) ; // Outline
GpiEndPath (bps) ,*

GpiSetColor (bps, CLR_DARKGREEN) ;
GpiStrokePath (bps, IDJPATH, OL) ;

GpiSetCbarSet (bps, LCIDJ3EFAULT) ; // Clean up
GpiDeleteSetld (bps, LCID_MYFONT) ;
}

VECTFONT menu.

Vector FatADmo
Display

normally, like this:
GpiMove(hps, &ptlBeg);
GpiLine(hps, &ptlEnd);

and calling these same two functions
within a path bracket and then stroking
the path, like this:

GpiBeginPath(hps, idPath);
GpiMove(hps, &ptlBeg);
GpiLine(hps, &ptlEnd);
GpiEndPath(hps);
GpiStrokePath(hps, idPath, 0);

There are, in fact, some very significant
differences.

First, the line drawn with the normal
GpiLine function has what is called a
cosmetic line width. The default width
of the line is based on the resolution of
the output device. It is a device-

/* --
VF11.C — Fading font with various pattern densities
--*/

♦define INCL_GPI
♦include <os2.h>
♦include "vectfont.h"

VOID DisplayJFade (HPS bps, LONG cxClient, LONG cyClient)

{
static CHAR szText[] « "Fade" ;
static LONG cbText = sizeof szText - 1 ;
LONG IPattern ;
POINTL ptl ;

CreateVectorFont (bps, LCID_MYFONT, "Tms Rmn Italic") ;
GpiSetCbarSet (hps, LCID_MYFONT) ;
ScaleFontToBox (hps, cbText, szText, cxClient, cyClient) ;
QueryStartPointlnTextBox (hps, cbText, szText, &ptl) ;

GpiSetBackMix (hps, BM_OVERPAINT) ;

for (IPattern = 8 ; IPattern >« 1 ; IPattern—)
{
GpiBeginPath (hps, IDJPATH) ;
GpiCharStringAt (hps, &ptl, cbText, szText) ; // Text out
GpiEndPath (hps) ;

GpiSetPattern (hps, IPattern) ;
GpiFillPath (hps, IDJPATH, FPATH_ALTERNATE) ; // Fill path

ptl.x += 2 ;
ptl.y -= 2 ;

}

GpiSetPattern (hps, PATSYM_SOLID) ;
GpiSetBackMix (hps, BM_LEAVEALONE) ;
GpiCharStringAt (hps, &ptl, cbText, szText) ; If Solid

GpiSetCbarSet (hps, LCID_DEFAULT) ; // Clean up
GpiDeleteSetld (hps, LCID_MYFONT) ;
}

Display

Figure 13
different patterns, displayed by
selecting Fading Font from the
VECTFONT menu.

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

dependent width for a normal line. The width of the line
does not change when you use matrix transforms to set
different scaling factors in the coordinate space.
A l though GPI p rov ides a func t ion ca l l ed
GpiSetLineWidth to change the cosmetic line width,

this function is not implemented in MS ® OS/2 Version 1.1.
But a line drawn by stroking a path has a geometric line width.

This is a line width (in world coordinates) that you set with the
GpiSetLineWidthGeom function. Because this line width is
specified in world coordinates, it is affected by any scaling that
you set using matrix transforms.

Second, a line drawn with GpiLine can have different line
types that you set with the GpiSetLineType function. These line
types are various combinations of dots and dashes. The line is
drawn with the current line color and the current line mix.

But a line drawn by stroking a path does not use the line type.
The line is instead treated as an area that follows the path of the
line but which has a geometric width. This area is filled with the
pattern that you set with GpiSetPattem, and is colored with the
current pattern foreground and background color, and the
current pattern foreground and background mix.

Third, a line drawn by stroking the path can have various
types of line joins and ends. By calling GpiSetLineJoin
you can specify that lines meet with a rounded, square, or miter

12
join. GpiSetLineEnd lets you specify rounded, square, or flat
ends to the lines.

The function in the VF12.C file (see Figure 14) demonstrates
the use of geometrically thick lines filled with patterns to give
the letters a kind of neon look.

You can run this function by selecting Neon Effect from the
VECTFONT menu. The function strokes the path using various
geometric line widths filled with a PATSYM_HALFTONE
pattern and several colors. The outline of the font is white, but
it is surrounded with a halo of red.

A better effect could be achieved on devices capable of more
than 16 colors. In this case, you can use a solid pattern but color
each stroke with a different shade of red.

Clipping to the Text Characters
The third option after creating a path is to call GpiSetClipPath:

GpiSetClipPath(hps, idPath, lOption);

The lOption parameter can be either SCP_RESET (which equals
OL, so it’s the default) or SCP_AND. The SCP_RESET option
causes the clipping path to be reset so that no clipping occurs.
The SCP_AND option sets the new clipping path to the
intersection of the old clipping path and the path you’ve just
defined in a path bracket. Any open areas in the path are automat-
ically closed.

You can combine the SCP_AND
option with either SCP_ALTERNATE
(the default) or SCP_WINDING. As
with GpiFillPath, you’ll probably want
to use alternate mode when working
with paths created from vector fonts.

The function in VF13.C (see Figure
15) calls GpiCharStringAt with the text
string WOW within a path bracket. This
is followed by a call to GpiSetClipPath.
The clipping path is now the interior of

/*---
VF12.C — Neon font using geometricall thick lines
—--- */

#define INCL_GPI
#include <os2.h>
#include "vectfont.h”

VOID Display_Neon (HPS hps, LONG cxClient, LONG cyClient)
{
static CHAR szText[] = ” Neon ’’ ;
static LONG cbText = sizeof szText - 1 ;
static LONG lForeColor[] = { CLR_DARKRED, CLR_DARKRED, CLR_RED,

CLR_RED, CLR_WHITE, CLR_WHITE };
static LONG lBackColor[] = { CLR_BLACK, CLR_DARKRED, CLR__DARKRED,

CLR_RED, CLR_RED, CLR_WHITE];
static LONG IWidthf] = { 34, 28, 22, 16, 10, 4 } ;

H _____________________________________I

INT iIndex ;
POINTL ptl ;

CreateVectorFont (hps, LCID_MYFONT, "Tms Rmn Italic") ;
GpiSetCharSet (hps, LCID_MYFONT) ;
ScaleFontToBox (hps, cbText, szText, cxClient, cyClient) ;
QueryStartPointlnTextBox (hps, cbText, szText, &ptl) ;

ColorClient (hps, cxClient, cyClient, CLR__BLACK) ;

for (ilndex = 0 ; ilndex < 6 ; ilndex++)
{
GpiBeginPath (hps, ID_PATH) ;
GpiCharStringAt (hps, &ptl, cbText, szText) ; // Text out
GpiEndPath (hps) ;

GpiSetColor (hps, IForeColor[ilndex]) ;
GpiSetBackColor (hps, IBackColor[ilndex]) ;
GpiSetBackMix (hps, BM_OVERPAINT) ;
GpiSetPattem (hps, PATSYM_HALFTONE) ;
GpiSetLineWidthGeom (hps, IWidth[ilndex]) ;

GpiStrokePath (hps, ID_PATH, OL) ; // Stroke path
}

GpiSetCharSet (hps, LCID_DEFAULT) ; // Clean up
GpiDeleteSetld (hps, LCID_MYFONT) ;
}

Figure 14 Neon characters using
geometrically thick lines, displayed
by selecting Neon Effect from the
VECTFONT menu.

MARCH 1989

- f
f

/
o S

VF13.C — Clipped Spokes
----------------------------*/

#define INCL_GPI
#include <os2.h>
#include <math.h>
#include "vectfont.h"

VOID Display_Spokes (HPS hps, LONG cxClient, LONG cyClient)
{
static CHAR szText[] = "WOW" ;
static LONG cbText = sizeof szText - 1 ;
static LONG IColors[] = { CLR_BLUE, CLR_GREEN, CLR_CYAN,

CLR_RED, CLR_PINK, CLR_YELLOW,
CLR_WHITE } ;

double dMaxRadius ;
INT i, iNumColors = sizeof IColors / sizeof lColors[0] ;
POXNTL ptl ;

CreateVectorFont (hps, LCID_MYFONT, "Tms Rmn") ;
GpiSetCharSet (hps, LCID_MYFONT) ;
ScaleFontToBox (hps, cbText, szText, cxClient, cyClient) ;
QueryStartPointlnTextBox (hps, cbText, szText, &ptl) ;

13

Figure 15 Color lines clipped
to the interior of a text string,
displayed by selecting Clipped
Spokes from the VECTFONT
menu.

ColorClient (hps, cxClient, cyClient, CLR_BLACK) ;

GpiBeginPath (hps, ID_PATH) ;
GpiCharStringAt (hps, &ptl, cbText, szText) ; // Text string
GpiEndPath (hps) ;

GpiSetClipPath (hps, ID_PATH, SCP_AND | SCP_ALTERNATE) ;

dMaxRadius = sgrt (pow (cxClient / 2.0, 2.0) +
pow (cyClient / 2.0, 2.0)) ;

// Draw spokes
for (i = 0 ; i < 360 ; i++)

{
GpiSetColor (hps, IColors[i % iNumColors]) ;

ptl.x = cxClient / 2 ;
ptl.y = cyClient / 2 ;
GpiMove (hps, &ptl) ;

ptl.x += (LONG) (dMaxRadius * cos (i * 6.28 / 360)) ;
ptl.y += (LONG) (dMaxRadius * sin (i * 6.28 I 360)) ;
GpiLine (hps, &ptl) ;
}

GpiSetCharSet (hps, LCIDJDEFAULT) ; // Clean up
GpiDeleteSetld (hps, LCID_MYFONT) ;
}

are usually equivalent to:

GpiStrokePath(hps, ID_PATH, 0L);

GpiModifyPath and GpiStrokePath are
the only two functions that use the
geometric line width, joins, and ends.

In theory, you can call GpiStrokePath
after GpiModifyPath, like this:

GpiModifyPath(hps , ID_PATH,
MPATH_STROKE);

GpiStrokePath(hps , ID_PATH,
0L) ;

This should do something, and it should
be rather interesting, but GPI usually
reports that it can’t create the path be-
cause it’s too complex.

Instead, let’s look at GpiModifyPath
followed by GpiSetClipPath. The function in VF15.C (see
Figure 16) is almost the same as the one in VF13.C (see Figure
15) except that it sets the geometric line width to 6 (’/i 2 inch) and
calls GpiModifyPath before calling GpiSetClipPath.

Note that the colored lines are clipped not to the interior of the
characters but to their original outlines. By the use of
GpiModifyPath, the outlines of the characters have themselves
been made into a path that is V12 inch wide. This is the path that
is used for clipping.

Is It Enough?
I think it’s clear that the facilities provided by GPI for

working with vector fonts equal—and sometimes exceed—
those in PostScript. The GPI interface is very powerful
and very versatile.

Is that enough? No, it’s not. The implementation of vector
fonts in GPI has a s t ruc tu ra l flaw that still leaves
PostScript the king.

Take a close and careful look at Figure 3 and the display of the
Helv font. You’ll notice that the two legs of the H are different
in width by one pixel when they should be the same width. This

the letters. The function draws a series of colored lines
emanating from the center of the client window.

The function in VF14.C (not shown here) uses a similar tech-
nique but draws a series of areas defined by splines.

Modifying the Path
Between the call to GpiEndPath to end the path and the call

to GpiStrokePath, GpiFillPath, or GpiSetClipPath, you can call
GpiModifyPath. This function uses the current geometric line
width join, and end to convert every line in the path to a new line
that encloses an area around the old line. For example, suppose
that the path contained a single straight line. After
GpiModifyPath the path would contain a closed line in the
shape of a hot dog. The width of this hot dog is the geometric
line width. The ends of the hot dog could be round, square, or
flat, depending on the current line end attribute.

Following the creation of a path, these two functions in
succession:

GpiModifyPath(hps , ID_PATH, MPATH_STROKE);
GpiFillPath(hps, ID_PATH,

FPATH-WINDING) ;

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

is undoubtedly caused by a rounding error. It’s
obviously more noticeable on a low-resolution video
display than it would be on a 300 dpi laser printer, but
even on a laser printer such errors will affect the

legibility of the text.
Errors such as this do not occur with PostScript fonts.

PostScript fonts are true algorithms that are able to recognize
and correct any anomalies in the rendition of the characters. In

contrast, GPI fonts (which are encoded as a simple series of
polylines and polyfillets) are drawn blindly without any feed-
back or correction.

So, while we can rejoice in what we have in GPI, there is still
the need for some improvement.

14

/*--------------------------
VF15.C — Clipped Spokes
-------------------------*/

#define INCL_GPI
#include <os2.h>
#include <math.h>
#include "vectfont.h"

VOID Display_ModSpokes (HPS hps, LONG cxClient, LONG cyClient)

t
static CHAR szText[] = "WOW" ;
static LONG cbText = sizeof szText - 1 ;
static LONG IColors[] = { CLR_BLUE, CLR_GREEN, CLR_CYAN,

CLR_RED, CLR_PINK, CLR_YELLOW,
CLR_WHITE } ;

double dMaxRadius ;
INI i, iNumColors = sizeof IColors / sizeof IColors[0] ;
POINTL ptl ;

CreateVectorFont (hps, LCID_MYFONT, "Tms Rmn") ;
GpiSetCharSet (hps, LCID_MYFONT) ;
SealeFontToBox (hps, cbText, szText, cxClient, cyClient) ;
QueryStartPointlnTextBox (hps, cbText, szText, &ptl) ;

ColorClient (hps, cxClient, cyClient, CLR_BLACK) ;

U>K»
Display

GpiBeginPath (hps, ID__PATH) ;
GpiCharStringAt (hps, &ptl, cbText, szText) ; // Text string
GpiEndPath (hps) ;

GpiSetLineWidthGeom (hps, 6L) ; // 1/12 inch
GpiModifyPath (hps, ID_PATH, MPATH_STROKE) ;
GpiSetClipPath (hps, ID_PATH, SCP_AND | SCP_ALTERNATE) ;

dMaxRadius “ sqrt (pow (cxClient / 2.0, 2.0) +
pow (cyClient / 2.0, 2.0)) ;

// Draw spokes
for (i = 0 ; i < 360 ; i++)

{
GpiSetColor (hps, IColors[i % iNumColors]) ;

pt1.x = cxClient / 2 ;
ptl.y = cyClient / 2 ;
GpiMove (hps, &ptl) ;

ptl.x += (LONG) (dMaxRadius * cos (i * 6.28 I 360)) ;
ptl.y += (LONG) (dMaxRadius * sin (i * 6.28 / 360)) ;
GpiLine (hps, &ptl) ;
}

GpiSetCharSet (hps, LCID_DEFAULT) ; It Clean up
GpiDeleteSetld (hps, LCID_MYFONT) ;
}

Figure 16 Colored lines
clipped to the outline of text
string characters, displayed
by selecting Mod-Clipped
Spokes from the VECTFONT
menu.

MARCH 1989

AN INTERVIEW WITH ETHAN WINER

Basic as a Professional
Programming Language

and Macro Assembler (MASM) are the languages of choice for most programmers working
in the personal computing environment. Occasionally one hears of a programmer using
BASIC, but generally what one hears from professional programmers is that BASIC is a toy
language—nice for learning, but hardly a language for serious program development.

That attitude is beginning
to change. In fact, BASIC
has grown up quite a bit
over the past year. The
Microsoft® QuickBASIC
Version 4 user interface
prov ides an effect ive
working environment for
both the beginner and the
advanced user, and the
BASIC language itself, via
the Mic rosof t BASIC
Compiler Version 6.0, now
has the professional lan-
guage features program-
mers need.

One believer in the
ability of BASIC to handle
the needs of programmers
is Ethan Winer, founder of Crescent
Software—a firm that specializes in
software development in BASIC—as
well as the developer of QuickPak
Professional, a library of advanced
routines designed especially for the
BASIC compiler environment. Winer
has also written numerous articles on
BASIC for many industry publications.

Recently we talked to Winer, who
shared with us the reasons BASIC is his
language of choice, his reasons for deve-
loping QuickPak Professional, and
some insights into the technical issues
involved in BASIC programming.

MSJ: Why has BASIC become the
language of choice for you and Crescent
Software?

EW: Unlike C and Pascal, Microsoft
BASIC has always included a wealth of
built-in commands and features. It can

The overwhelming advan-
tage of BASIC is that it’s
extremely easy to learn and
use; the commands and
functions have sensible
names and their purpose is
usually obvious. Unlike C
or assembly language, it is
a lmost imposs ib le to
overwrite the operating
system or corrupt memory
unless you really try, but
this doesn’ t limit the
control a program has over
the system resources. For
example, the PEEK and
POKE commands let you
read or write to any memory
address, and INP and OUT

will directly access hardware ports.
Another important advantage of

BASIC is that it handles type conversion
automatically. That is, you can freely
multiply an integer times a double
precision variable, and BASIC will
automatically handle the math. String
handling is equally powerful; there are
functions to assign or extract characters
anywhere in a string. Graphics is yet
another powerful feature. BASIC has
built-in commands to draw circles,
boxes, filled boxes, and so forth, on all
of the popular monitor types.

Why did Crescent Software focus on
developing a library of programmer" s
tools for BASIC?

There is no disputing the fact that
programming languages have come a
long way in the past few years. Yet no
matter how complete or well designed a

|£ Z|

t dzL

:P" ~T~:Zr z i
t z j

■

>TOOLS\

to begin.

BASIC offers the programmer
extensive graphics capabilities.

produce sophisticated graphics on an
assortment of monitors, open and
manipulate files and devices, play
music, and access memory and
hardware ports directly. The release of
Microsoft QuickBASIC 4 and the
BASIC 6.0 compiler, has added even
more commands and features.

BASIC has always been the easiest of
the high-level languages to use, and the
latest version is as powerful and capable
as either C or Pascal. Furthermore,
Microsoft has made clear they intend to
keep improving both their BASIC 6.0
Professional Compiler and Microsoft
QuickBASIC.

Of the features that raise BASIC to the
level of other professional languages,
which do you find particularly useful?

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

BASIC cannot easily access them. You
would need these to list the files on a
disk, change their date and time, or read
and write a disk’s volume label.

Second, we wanted these services to
be very easy to use. For example, all of
the routines that search and process
strings would be in both case sensitive
and insensitive versions. It was also
important to limit the number of passed
parameters to the absolute minimum,
and implement the routines as functions
where appropriate. Using functions
rather than called subroutines is the
most natural way to extend BASIC.

Third, in some cases BASIC’s error
handling abilities are not powerful
enough. C or Pascal let you try opening
a file and then check whether an error
occurred, but BASIC requires a special
error handling subroutine set up in
advance. If an error occurs, you end up
in the error handler—often with no idea
of how you got there or where in the pro-
gram to return to. So some means to test
a disk drive or printer or even bypass
BASIC’s file handling altogether would
be a useful addition.

From the looks of all the source code
and tutorials you've provided, it would
appear that you have very strong con-
victions about teaching BASIC.

Yes. What programmers often need is
not just more language features, but an
understanding of how to use those
capabilities already present. The single
most useful tool a programmer can
acquire is knowledge.

Most accomplished programmers
will tell you the best way to become
proficient is by studying other people’s
programs. Indeed, many programmers
are self-taught, learning solely from
books and articles in popular computer
magazines. By using someone else’s
program, studying the source code and
perhaps even modifying it, a much
deeper understanding results.

We want people to understand how
these routines work, and be able to leam
from them. This means not only
providing all of the BASIC and
assembly source, but also writing a
series of tutorials explaining the under-
lying concepts.

language is, programmers will
always find they need some addi-
tional capability or feature. Third
party libraries—or toolboxes—have

traditionally filled that gap. A language
like C requires external library support,
due to its inherent limitations. For
example, “pure” C can neither clear the
screen nor locate the cursor, so C
prog rammers must use t oo lbox
routines, often viewing them as a
necessary fact of life. Likewise, Pascal
has its own limitations, and toolboxes
are now equally common for that
language as well.

But perhaps the most important
reason to use a third-party library is to
reduce the effort needed to achieve a
comple t ed p rog ram. No doubt
knowledgeable programmers could
design a pull-down menu system or a
full-featured text editor with mouse

BASIC HAS ALWAYS

BEEN THE EASIEST

OF THE HIGH-LEVEL

LANGUAGES TO USE,

AND THE LATEST

VERSION IS AS

POWERFUL AND

CAPABLE AS EITHER

C OR PASCAL.

16

support, but that requires an enormous
amount of time, time better spent
designing the rest of the program. Fur-
thermore, end users are used to snappy
screen displays, pop-up windows, and
all the other hallmarks of a sophisticated
user interface. A good toolbox product
can provide “canned” solutions to such
programming problems, as well as
enhance and extend a language.

eliminating such code as:
IF X > MaxAllowed THEN
Value = MaxAllowed
ELSE
Value = X
END IF

Instead a single statement does the same
thing, but much more elegantly:

Value - Minint(X, MaxAllowed)

We made many other custom functions
to assist the QEdit editor that also
resulted in meaningful additions to the
package.

In designing QuickPak Professional
we had several very clear goals in mind.
We wanted to provide ready-made
solutions to common programming
problems. These fall into two general
categories: routines that are difficult for
most programmers to create them-
selves, and services BASIC just cannot
do directly.

An example of the first category
would be routines written in assembly
language, perhaps to search or sort an
array very quickly. Other difficult pro-
grams would be a text editor, a
spreadsheet, and a delay timer with
microsecond resolution.

The second category is comprised of
DOS and BIOS interrupts, because

Did the library simply emerge from a
collection of utilities you built up over
time, or did you set out specifically to
create the library?

Designing a set of tools requires much
more effort than, say, merely writing an
interface to the various DOS and BIOS
services. We would often start design-
ing a program only to discover that one
or more special support routines were
also needed. In many cases our needs led
to the development of a custom function
or subroutine that turned out to be useful
in a broader sense.

One example is a set of functions that
returns the minimum and maximum of
two values. These are used extensively
in many of the BASIC programs
provided in QuickPak Professional and
they eliminate what would otherwise
be many IF/THEN statements. The
Minint assembler function returns the
minimum of two integer values,

MARCH 1989

that comes with Microsoft Macro
Assembler Version 5 (MASM).

One major advantage of a function
is the elimination of a passed param-
eter, in situations where it is appropriate.
If the routine that returns the number of
matching files were set up as a program
it would be called like this:

ing the length of the string and the
address of the actual data.

Using CALL INTERRUPT required
BASIC programmers to add the zero
byte manually whenever a file name has
to be passed to a DOS file service. Since
one of our highest priorities was ease of
use, we instead chose to have the file
name copied to a temporary holding
area; then the routine adds the ter-
minating zero byte before calling DOS.

An important DOS service most
programs need is the ability to get a list
of file names from disk. No application
worth its salt will force the operator to
remember the names of files to be
loaded. Instead, a menu should list all
the files present, with some sort of
“point and shoot” method provided for
selecting one.

DOS provides no direct way to get a
complete list of file names in one
operation. Even if it did, the BASIC
program would need to know
beforehand the number of names
present so sufficient string memory
could be reserved for them. The solution
we devised was to create a function that
returns the number of file names
matching a given search specification.
Once this is known, a BASIC string
array may be reserved for them, and a
second subroutine retrieves all of the
names from DOS at once.

This brings up an interesting point.
Microsoft BASIC provides two ways to
create a subroutine: subprograms
accessed with the CALL keyword, and
functions invoked from a BASIC
expression. You seem to rely heavily on
functions.

Functions are indeed useful and a major
and welcome addition. One can develop
a BASIC function in either BASIC or
assembly language. The instructions for
implementing an assembler function in
QuickBASIC can be found in the
Mixed-Language Programming Guide

The manuals that come with
Microsoft QuickBASIC 4 are excellent
as far as they go, but they gloss over a
number of important topics; for
example passing TYPE variables and
arrays to subprograms and functions.
Instead, the examples that use a TYPE
array skirt the issue by declaring the
array as SHARED. Likewise, the man-
ual makes no mention of saving and
loading arrays and EGA screen images
to disk.

Programmers who would like to
become more proficient in BASIC must
understand these concepts. QuickPak
Professional includes much of this
information, along with tutorials on
accessing files, storing string and
numeric data in a program’s code
segment, and a comparison of the
various ways procedures are designed.

One of the nice things about BASIC is
that it relieves the programmer of the
need to know about the nuts and bolts of
the operating system. Unfortunately this
also results in some limitations. Canyou
provide an example where you've
removed some of these limitations while
keeping BASIC s ease of use?

BASIC has many built-in commands,
but it is admittedly lacking in the ability
to access DOS and BIOS interrupts.
Microsoft QuickBASIC 2 added a form
of the CALL INTERRUPT feature,
though only as an add-on available by
linking with a special object module.
Further, CALL INTERRUPT is clumsy
to implement, and its use requires a
knowledge of DOS services that many
BASIC programmers do not possess.

Rather than simply provide a
“watered down” replacement for CALL
INTERRUPT, we felt it was important
that the BASIC programmer not have to
understand how DOS and BIOS ser-
vices are accessed.

Let me give you an example. Any
DOS function that accepts a file name
expects that name to be in an ASCIIZ
format; this is how C strings are stored.
Unlike C, BASIC strings do not contain
a zero byte to mark the end; instead, a
string descriptor is maintained for each
string or string array element. A string
descriptor is a 4-byte table contain-

17

CALL FCountC'*.*", Count)
PRINT Count; "files were found"

But designing the same routine as a
function makes it both easier to use and
understand:
PRINT FCount
"files were found"

The output of a BASIC function may
be used directly within a PRINT state-
ment or, in the case of setting aside
sufficient string elements, as part of the
DIM command:
DIM Array$(FCount ("*.*"))

Using a function like this is the most
natural way to extend the BASIC lan-
guage, and since one less parameter is
needed, a function will be faster than an
equivalent called subroutine.

Parameters in all Microsoft lan-
guages are passed on the stack, and it is
no secret that stack operations can be
very slow. This is why functions are
especially good when used without pa-
rameters. For instance, we have includ-
ed a set of functions to return the status
of the various keyboard settings. The
usual method to determine the status of,
say, the Alt key is to use BASIC’s DEF
SEG, PEEK, and AND commands:

DEF SEG = 0
AltKey = PEEK(&H417) AND 8
IF AltKey THEN PRINT_
"the Alt key is depressed"

By using a dedicated function, you
can replace all that code with a single
statement like:
IF AltKey THEN PRINT_
"the Alt key is depressed"

Better still, without passed param-

Figure 1: Sample BASIC Function Implemented in MASM
Xor AX, AX ;look at BIOS data in low memory
Mov ES,AX
Mov AL,ES:[417h] ;get the keyboard status byte
And AL, 00001000b /clear all but the Alt Key bit
Ret /return to BASIC, AX holds result

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

eters only five instruc-
tions in assembler code
are necessary to imple-
ment such a function

(see Figure 1).

Assembly language sur-
faces again. It would
appear that a knowledge of
MASM might be necessary
even for the BASIC pro-
grammer. What do you
think?

Many programmers who
use high-level languages
would like to learn assem-
bly language but are intim-
idated by what they believe
will be a long and painful
process. Learning assembly language is
actually not that painful, and even a
casual understanding from the perspec-
tive of a BASIC programmer is useful.
Of course, you need not understand
assembly language to use an assembler
routine.

Are there any special things to know
about assembly language functions?

The most obvious thing that comes to
mind is that, before an assembly lan-
guage function can be used in Microsoft
BASIC, the program that uses the
function must declare it. Having to
declare procedures is new to BASIC,
but in this case it is not unreasonable. Or
else — in the Alt key example—
Microsoft QuickBASIC, would assume
that the Alt key is simply an integer
variable. By declaring it ahead of time,
Microsoft QuickBASIC knows that the
Alt key is a function to be called, and the
value returned in AX holds the result.

And using assembly language speeds
things up here and there.

That’s an equally important reason for
using assembly language. We wanted to
speed up those operations that typically
are very slow in any high-level lan-
guage. Again, assembly language is the
key to great performance, and about
two-thirds of the routines in QuickPak
Professional are in assembler.

The majority of MS-DOS® language

18 File

(Rdot# *ay be positioned anywhere on
> nearly any nunber of rows and
4 ine help, fu l l word-wrap, both
sere 11inih uell as Hoch

Open Progran

.
S# ft H

Create F i l e . .
load F i l e . , .

BOS Shell

Exit 26 Pcs.
25 Feet .51

00
23
00
23
76

$
$Sbs

$85.
$54.

$250.
$56.
$23.

haft Coupler 1.25 in.
Prop. Shaft 1.25 in.

tuff ing Box 1.25 in.
u t l ass Bearing 1.25 in

needed boost, in the area of
processing arrays. We have,
for example, provided a set
of functions for each of
Microsoft BASIC’s numer-
ic array types to return the
largest or smallest values.
Using a dedicated assem-
bler routine is typically six
or seven times faster than an
equ iva len t funct ion in
BASIC.

An even greater improve-
ment can be had when sav-
ing an entire string array to
disk and then reloading it
later. One of the slowest
operations BASIC performs
is reading data from a

sequential file; it must examine every
single byte to see if it is either a carriage
return that marks the end of a string, or
the CHR$(26) byte that marks the
end of a file. Creating a custom assem-
bler routine to capture the entire file in
one ope ra t i on saves an eno rmous
amount of time.

The fastest way to save a numeric
array in BASIC is to use BSAVE, as
opposed to making multiple PRINT
statements to a file. The major problem
with the latter is the overhead required to
convert the values from the internal
format used by the PC into the
equivalent ASCII digits. Further,
BSAVE takes up less disk space.

In the case of integers, only 2 bytes are
used to store the number in memory, re-
gardless of its value. Contrast that with
up to five digits (six if the number is
negative) to store the number as ASCII
digits. Worse, each number in the file
would also need either a carriage return/
line feed pair, or a delimiting comma.
BSAVE instead captures a “snapshot”
of any area of memory, and sends it to
disk in one operation. The complemen-
tary command is BLOAD, which
retrieves a previously BSAVE’d file.

What about string arrays?

Unlike numeric arrays, BASIC string
arrays do not occupy contiguous
memory addresses . Ins tead , the
descriptor tables are contiguous, and the
actual data could be anywhere in near

1988

is
j

cn
bJ

 N
'J

 C
S

U
J

(T

co
 K

un

cn
 A

cs

 t
-

cn
 N

®

•

-

K

2
S

tn

 S

ZH
 S

Pull-down menus and multiple
windowed applications are all

possible with BASIC. Note the scroll
bars on the editor window.

compilers, for example, do screen
printing through the operating system in
order to be compatible with as many
machines as possible. Whether this is
done via DOS or the BIOS, the results
are too slow. Microsoft QuickBASIC 4
partly addresses this by writing directly
to video memory, but there is still much
room for improvement. Each character
must be examined to see if it is a special
control character and for each character
it takes extra time just to see if the screen
needs to be scrolled. We devised several
quick printing routines to accommodate
multiple video pages and to display new
text without destroying the colors
already on the screen.

One particularly useful routine
displays a portion of a string array,
containing it within a specified area of
the screen. This greatly simplifies the
creation of, for example, a browse facil-
ity, where you can scroll up and down
through the entire array on the screen.
Again, our intent was to have these
routines do as much as possible and save
the programmer unnecessary work.

Assembler routines would also give the
BASIC programmer substantially faster
array processing.

This is exactly where assembly
language really gives BASIC a much

MARCH 1989

GRAPHICS works only with
printers that are compatible with the
Epson®/IBM® command set. Since
BASIC supports the EGA, VGA,
and Hercules® standards, it was im-
portant to provide a routine that could
print a graphics image from any of these
modes.

values offered by integers, using them
makes a lot of sense. But often all that is
needed are simple true or false variables,
and an integer array can waste an
enormous amount of memory. A 1000-
element bit array occupies only 125
bytes, compared to 2000 bytes for a
conventional integer array.

There is a routine you supply that lets a
BASIC program write to two monitors at
the same time. How did you accomplish
that?

It isn't difficult to create a routine that
changes the active monitor, and the very
act of switching monitors always clears
the screen in the process. Because there
is nothing to prevent a program from
writing directly to screen memory for an
inactive monitor, our solution was both
effective and easy to implement.

All of the video routines in QuickPak
Professional automatically determine
the type of monitor installed when
called. This is necessary for two rea-
sons. First, the video segment is differ-
ent for color and monochrome monitors,
so the correct segment must be known
before a routine can write directly to
screen memory. Second, and equally
important, CGA monitors create
“snow” unless the reading and writing is
synchronized to the horizontal retrace.

In the routine that writes to any
monitor, though, the caller must instead
indicate the type of monitor to write to
with a code; 1 means monochrome, 2 is
a CGA, and 3 means an EGA or VGA.
Even though a PC can support two mon-
itors at once, they must be different—
that is, both cannot be color, or both
monochrome. Thus the programmer
would simply specify the monitor type
that is not the current one. Of course
there is also a function that reports the
currently active type of monitor.

You've also given BASIC programmers
a way to dump screen images regardless
of the screen mode they may be in. What
can you tell us about that?

We also wanted to address graphics.
A ma jo r l im i t a t i on in the
GRAPHICS.EXE program that comes
with DOS is that it works only in the
CGA screen modes. In addit ion,

memory. Therefore, before BSAVE can
be used on a string array, the data from
all of the elements must be gathered up
into a single block. A pair of dedicated
routines processes all of the string
elements in one operation, and copies
them to an integer array and back again.
An additional routine lets the program-
mer retrieve an individual string ele-
ment if needed.

Numeric arrays in Microsoft
QuickBASIC are not restricted to near
memory. Just being able to copy a string
array out to far memory is a useful
feature. And if far memory becomes
congested, it’s easy to save the arrays to
disk to open additional space. Further,
because we delimit the end of each
string with a carriage retum/line feed
pair, the file is directly readable by any
application.

You've provided BASIC users with two
“new” data types. What are Very Long
Integers and Bit Arrays?

While I was working on QuickPak Pro-
fessional, several interesting concepts
and routines resulted, including the de-
velopment of two “new” variable types.

One important and long-overdue
feature introduced with Microsoft
QuickBASIC 4 is support for long (4-
byte) integers. Where appropriate, long
integers have a decided advantage over
floating point numbers since you can
process them very quickly, without any
rounding errors. Accountants like that.
Considered as pennies, their range
of +/-$21,474,836.47 is generally ade-
quate—except for serious financial
work.

As a solution, we devised a set of
routines for adding, subtracting,
multiplying, and dividing what we call
Very Long Integers. These variables use
8 bytes apiece and let you manipulate
extremely large numbers without
rounding errors. You assign a Very
Long by aliasing it into a conventional
double precision variable, and BASIC
isn't any the wiser.

In the opposite direction, we also
created a pair of routines to manipulate
Bit Arrays. The smallest variable that
BASIC provides is a 16-bit integer.
When a program needs the range of

19

We realized that to be truly useful a
screen print routine must know not only
the Epson printer codes (which all
modem printers can emulate), but also
the HP® LaserJet® codes. Since a
LaserJet can print in several sizes, the
caller should be able to specify which
resolution to use. The only remaining
problem was what to do with the colors.

A stunning three-dimensional pie
chart displayed in sixteen colors is
useless as a printout; all you’d get is a
big black circle. Clearly, the best
solution was to substitute a different
hatching pattern for each of the possible
screen colors. But what complicates
things considerably is the different ways
that graphics screen memory is
organized.

In text modes, each successive
character on the screen is contained in
successive bytes in display memory.
But in CGA graphics modes the screen
memory is organized using a method
known as interlacing. In an interlaced
system, every other row is in a different
block of memory, which makes access-
ing the memory much more difficult.

Hercules graphics also interlaces,
except that it uses every fourth row.
EGA and VGA adapters use yet another
system, where each color is in an
entirely different segment. This compli-
cated both reading screen memory and
translating the colors into hatching
patterns.

One of your accomplishments was the
creation of a word processor, QEdit,
written in BASIC. BASIC's variable
length strings must have been very
useful there.

Languages like C or Pascal that permit
only fixed length strings take much
more programming to get the same
results. The program either wastes a
substantial amount of memory for text
lines that are shorter than the maximum,

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

or it must maintain a table of pointers
to keep track of where in memory
each string begins. As characters and
lines are inserted or deleted, the

any two strings can be exchanged by just
swapping their descriptor tables.
Descriptors are well documented in the
Microsoft QuickBASIC manuals, but
unfortunately that isn’t the entire story.

What is not mentioned is how string
data is tied. It took us several days to
figure it out by trial and error.

Once we could exchange strings for
sorting purposes, it was a simple matter
to insert or delete elements in an array.
On a standard IBM PC, inserting a
single string at the beginning of a 2000
element array takes more than two
seconds using Microsoft QuickBASIC.
Contrast that to less than a tenth of a
second for the equivalent routine writ-
ten in assembler.

Some of the string functions in
QuickPak must have caused similar
problems. But again it seems that by
providing "functions” you’ve made life
easier.

String functions were indeed yet
another difficult feature to implement—
and again, because of the lack of
information. Besides the advantage of
eliminating a passed parameter, a func-
tion that can directly return a string
saves the programmer from having to
set aside space beforehand.

One of the routines in QuickPak
Professional obtains the current
directory for a specified drive. Since a
directory name can be as long as 64 char-
acters, such a routine would first need a
string of that length allocated. When the
routine is finished, the extra characters
at the end must be removed manually.

Because DOS uses a zero byte to mark
the end of any strings it returns, the
program must use BASIC’s INSTR
function to find that byte; then it keeps
only those characters that precede it.

Dir$ = SPACE$(64)
'set aside 64 bytes

Drive$ = "C"
'specify which drive

CALL GetDir(Drive$, Dir$)
'GetDir loads Dir$

Zero = INSTR(Dir$, 0)
'find the zero byte

Dir$ = LEFT$(Dir$, Zero-1)
'keep what's before the 0

When GetDir is designed as a string
function, it is considerably easier to use:

One of our biggest difficulties was
creating the string array processing
routines, which required additional
research. In particular, we had to get a
fair amount of information about
Microsoft BASIC’s internal workings.
As you mentioned, since BASIC
permits strings of nearly any length,
they are allocated dynamically as nec-
essary. This complicates memory man-
agement considerably and, not
surprisingly, Microsoft considers many
of those details to be proprietary.

This became evident immediately
when we started writing the routines to
sort a string array. I noted earlier that
BASIC strings use a descriptor table to
tell each string’s length and memory
location. At first glance, it seems that

20
pointers must be constantly updated.

The fact that BASIC supports
variable length strings reduced our
effort considerably. BASIC does all of
this very quickly and automatically, and
wordwrapping in QEdit will keep up
with even the fastest typist. [See Figure 2
for an example of a wordwrap function
in BASIC, and Figure 3 for an example of
how to code a function to obtain screen
colors—Ed.]

Variable length strings need to be
dynamically allocated. This must have
caused some significant problems.

Figure 2: WORDWRAP.BAS
DEFINT A-Z
DECLARE SUB Wordwrap (X$,

idard IBM PC, inser
2000 element array
rosoft QuickBASIC.

beginning

W$ = A$ +
PRINT W$
PRINT
Wide « 60
Wordwrap 1

(X$, Wide%)Wordwrap

LEN(X$)

Wide% TO “% STEP
Length%

FOR X% = Point
IF MID$(X$,

PRINT MID$(X$,
'LPRINT [TAB(Le

X% - Poin
MID$(X$, , x%

WHILE MID${X$,

WEND
IF POS(O) > 1 THEN PRINT

EXIT FOR

Length%WHILE

END SUB

MARCH 1989

those portions of QEdit into separate
sections, where users can easily delete
or remark them out.

One additional feature we wanted for
our own use was block operations on
columns, as well as for words and lines.
Most editors work only in sentence
mode, so that marking a block
downward captures the entire length of
the line. In a word processor this is often
sufficient. But when programming, the
ability to mark a long section and
instantly change the indent level is very
useful. A column mode also simplifies
copying or moving a table of numbers.

Apparently QEdit was designed for
use as a pop-up utility.

In reality, though QEdit is not meant
as a standalone word processor, it
certainly could be. It was, however,
designed so that users can add it as a
“pop-up” to a main BASIC program,
thus showing that even sophisticated
programs can be written in BASIC.

What sort of problems did you
encounter?

Because of the number of features in
QEdit, it uses four separate help screens,

21Drive$ = "C"
Dir$ = GetDir$(Drive$)

or
Dir$ = GetDir$("a")

As a function, GetDir locates the zero
byte, and then returns a string that is only
as long as actually needed.

Let's go back and talk about QEdit
again. You seem to have emulated the
Microsoft QuickBASIC 4 edit com-
mands in QEdit. With all of the editors
already available, why did you create
another?

Figure 3: GETCOLOR.BAS

DEFINT A-Z
DECLARE SUB GetColor (FG, BG) 'gets BASIC's current colors
DECLARE SUB SplitColor (XColor, FG, BG) ’.ASM - splits a color into FG

' and BG
DECLARE FUNCTION OneColor% (FG, BG) ’.ASM - combines FG/BG into one

1 color

CLS
INPUT "Enter a foreground color value (0 to 31): ”, FG
INPUT "Enter a background color value (0 to 7) : ", BG
COLOR FG, BG

PRINT : PRINT "BASIC's current color settings are: ";
GetColor FG, BG
PRINT FG; "and"; BG

PRINT "That combines to the single byte value of"; OneColor%(FG, BG)
PRINT "Broken back out results in";
SplitColor OneColor%(FG, BG), NewFG, NewBG
PRINT NewFG; "and"; NewBG

COLOR 7, 0 'restore defaults before ending

'This function obtains BASIC's current colors by first saving the
'character and color in the upper left corner of the screen. Next,
'a blank space is printed there, and SCREEN is used to see what color
'was used. Finally, the original screen contents are restored.

SUB GetColor (FG%, BG%) STATIC
V% ss CSRLIN 'save the current cursor location
H% = POS(O)
SaveChar% ® SCREEN(1, 1) 'save the current character
SaveColor% - SCREEN(1, 1, 1) 'and its color
SplitColor SaveColor%, SaveFG%, SaveBG%

LOCATE 1, 1
PRINT " CHR$(29);
CurColor% » SCREEN(1, 1, 1)
COLOR SaveFG%, SaveBG%
PRINT CHR$(SaveChar%);

LOCATE V%, H%
SplitColor CurColor%, FG%, BG%

COLOR FG%, BG%
END SUB

'print with BASIC's current color
'back up the cursor to 1,1
'read the current color
'restore the original color at 1,1
'and the character

'put the cursor back where it was
'split the color into separate
’FG and BG

'restore BASIC's current value for it

Though there certainly are many editor
programs available commercially, I
don’t know of any that come with free
source code, and none meant to be added
to another program. People often ask us
to develop new routines, but by far the
one they request most is a text editor that
can be customized and added to their
own programs. Of course, “editor”
means different things to different
people, and every programmer has his
or her own idea of how one should work.

Because our customers are familiar
with the Microsoft QuickBASIC 4 edit
commands, it made the most sense to
emulate those. But since we provide the
editor’s source code, it is easy to
customize the various keystrokes that
are recognized. But deciding on the edit-
ing commands was just the beginning.

To be truly useful, a text editor must
be able to accept text both as individual
lines and in the “one line per paragraph”
method of many word processors. We
also wanted the operator to be able to
change margins, size the window, and
scroll the text using a mouse—without
the calling program having to do any
additional work. Of course, keystrokes
must be processed quickly enough to be
totally transparent to the user.

QEdit contains a number of important
features such as full mouse support,
block operations, and on-line help. But
perhaps the most important feature is the
ability to remove features that aren’t
needed. After all, if someone wants a
bare bones editor with margins and
wordwrap, there should be a way to
exclude the code for block operations
and mouse support. We therefore placed

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

window size produces an
enormous amount of flicker.
In QEdit, we employed a
custom routine to close only
that portion of the window
actually needed to reduce
the window size.

We developed many other
related routines both for
QEdit and QuickPak
Professional in general. For
example, one quickly scans
a string array for the number
of active lines. Another
contains the mouse cursor
within a specified area on
the screen. Another deter-
mines the cu r r en t video
mode so a p rog ram can
accommodate 25, 43, or 50
lines automatically.

As you can see, an
enormous amount of detail
is required to implement a
full-featured word proces-
sor, regardless of the
language used. Microsoft
QuickBASIC and the
Microsoft BASIC 6.0
compiler are ideal for any
application that requires
extensive string manipula-
tion, but they are especially
appropriate for a word
processor.

accessed with the Fl
key. The help text is in
the code segment of the
program, and a special

assembler routine
retrieves it. This saves
nearly 2Kb of string
memory. Also, since users
can remove the mouse and
block operations, a
variable is modified in
each of those sections so
the help code will know
which screens are
appropriate.

Besides storing the help
text outside of string
memory, we used the same
technique for the cut-and-
paste clipboard. Other-
wise, with a fairly large
document loaded, BASIC
could run out of memory
when capturing the block.
Which brings up an im-
portant point. As difficult
as it was to capture a col-
umn that may span several
screens, deleting or past-
ing it somewhere else was
even tougher. Moreover,
to prevent the text block
from stealing string space,
the clipboard is kept in an
integer array. We had al-
ready written a string man-
ager to copy all or part of a
string array to an integer
array and back, but capturing and
pasting a column required two addi-
tional custom assembler routines.

One routine copies elements from a
string array to an integer array, but
starting at a given offset and for a
specified number of characters. If a line
ends short of the column width, it pads
the remainder with blanks. The second
custom routine retrieves the string
portions one by one from the integer
array, so the wordwrap routine can
insert the clipboard contents back into
the text.

We also needed a routine to close a
portion of a screen that had been saved
earlier. Because QEdit is a pop-up, it
saves the underlying screen automatic-
ally. When the screen size changes, it

The text nay be scrolled either by sl iding the scroll
bar diamonds at the bottom and right, or by pressing
on the arrow icons near the bottom right corner. The
window nay be resized by pressing on the lower right
or top left corners, and then noving the mouse. The
right margin nay be changed by pressing on the right
margin icon at the top of the screen, and then moving
it to the desired new position.

------------------1 pr ess Escape to exit lie Ip |===

The QEdit editin
screen j and sized to
features on-line hel
vertical scrolling,
delete, and copy,

All of the stand
Ho e and End wove to'
and PgDn keys scroll t
Ctrl-PgDn move to the f i r s t and last lines respectively. The
cursor nay also be moved to the top or hot ton of the edit window
with the Ctrl-Hone and Ctrl-End keys. |

Like the Microsoft QuickBASIC edi tor , QEdit uses the Ctrl -Left
and Ctrl-Right arrow keys to move the cursor by words, and blocks
are narked with any of the Shift-Cursor keys. Notice that blocks
nay also be narked using a conbi nation of the Shift AND Ctrl
arrows to junp by whole words. Beyond the usual block
operations, however, QEdit also supports block operations on
COLUMNS.

c 4

1 Barient U inches

sample spreadsheet

Units Ualue

Exhaust Hose
Babbit Disk 1

$750.00. Shaft

»s Bearing
Zincs 1.2!

Elec. Bilge Pump

Heat Exchanger

Snatch Blocks

B7120A

You have certainly made a
strong case for BASIC as a

“real” language.

I truly believe in BASIC as a serious
applications language. It has made
computer programming—real pro-
gramming—accessible to millions of
people. It is unfortunate that many
otherwise informed programmers view
BASIC 6.0 and Microsoft QuickBASIC
as unsuitable for “real” applications
simply because of the BASIC inter-
preter that comes with DOS. Besides
exceptional performance, the Microsoft
BASIC products also support recursion,
structured code and data, and many
other features needed for a modem, pro-
fessional language.

This editor and spreadsheet were
both developed using BASIC and

the functions available through the
Crescent Software library.

complicates matters.

So you also had to develop routines for
sizing windows on the screen. How was
this handled?

The user can at any time place the mouse
cursor at the upper left or bottom right
comer, and move the comer to a new
location. Of course, sizeable windows
are nothing new, but we wanted the
window to actually change, rather than
simply show where it would be upon
release of the mouse button.

With some programs, changing the

MARCH 1989

Organizing Data in Your
C Program with Structures,
Unions, and Typedefs

23

Greg Comeau

any of you have no doubt used
structures, unions, and typedefs in your C
programming careers. In general, structures are
easy to use, and they help in the programming
paradigms involved with the correct usage of data in

programs. They also keep code readable and maintainable. Unions
and typedefs can perform some
usage tends to become more
complicated and cryptic.

Since the mechanism of struct
and union is pretty well estab-
lished, I will not spend time de-
scribing their basic syntax (the
mechanism by which the gram-
mar of the C language dictates
the way they may be written) or
semantics (the way the compiler
treats them in a meaningful
fashion). Instead I will describe
some of the idiosyncrasies that
crop up with structures, unions,
and typedefs, providing a re-
source to use to avoid coding
bugs, recognize portability
problems, and know more about
the C language.

Recent Additions
The initial specification of C

appeared publicly in the classic
text The C Programming Lan-
guage by Brian W. Kemighan
and Dennis M. Ritchie (herein
referred to as K&R). In that
specification, structure assign-
ments, structure arguments, and
functions that returned struc-
tures were not allowed. Present
day compilers, however, allow
these activities to occur, and

of these duties as well, but their
these features have been for-
malized by the American
National Standards Institute’s
draft proposal for C (ANSI C)
which, I understand, will have
no more public review periods
and will at last become a bona
fide standard sometime around
March of 1989.

Another feature that has made
its way into that draft is initial-
ization of automatic structures.
However, this is not available
under all compilers, especially
those that typically come with
the UNIX® or XENIX® Com-
piler Development Set. For
example, the structure defini-
tion in Figure 1 A will not compile
under those compilers unless the
static storage class is added as an
attribute as is shown in Figure 1 B.

This places an extra burden
on the programmer and is due to
the compiler following the older
language specification rather
than some technical constraint
in compiler technology. This
restriction may also force you to
fill up more of your programs’
static storage space area than
you’d like. If space is at a pre-
mium, this may present prob-

M Ql-IIS ARTICLE

DESCRIBES SOME OF

THE IDIOSYNCRASIES

THAT CROP UP WITH

STRUCTURES, UNIONS,

AND TYPEDEFS, PROVIDING

A RESOURCE TO USE

TO AVOID CODING BUGS,

RECOGNIZE PORTABILITY

PROBLEMS, AND KNOW

MORE ABOUT THE

C LANGUAGE.

Greg Comeau is a principal of Comeau Computing, an independent software
development firm specializing in UNIX and C productivity tools. He

also does consulting and training for UNIX and C users.

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 1: Simple Examples of Structs |

□
1 main()
2 {
3 struct {
4 int a;
5 } s = { 1
6 }□
1 main()
2 {
3 static struct {
4 int a;
5 } s = { 1 };
6 }B
1 main()
2 {
3 struct {
4 int a;
5 } si, s2;
6
7 if (si == s2) /* syntax error */
8 printf("sl ==*s2\n");
9 else
10 printf(”sl != s2\n”);
11

for this. First, if the operation
were allowed, it would be
expected that it should work for
the inequivalency operator (!=),
for the relational operators (<, >,
<=, >=), and perhaps even for
some others. This would not be
100 percent desirable since it
would tend to put the compiler
through quite a few gyrations.

You may very well think “So
what?” about this point in time.
But I haven’t told you the entire
story yet. What happens is that a
data aggregate like a structure
could possibly have extraneous
memory associated with it (refer
to the sizeof section below), and
generating proper code would
be rather extravagant, especially
to support the relational opera-
tors. Furthermore, cross compi-
lation, or rather cross assembly,
of such code could produce
difficult to track bugs.

Member Access
Most C programmers I know

have no problem understanding
C’s two member access oper-
ators: the . and the ->. The dot
allows for the retrieval of a given
member within a structure or
union, and the arrow allows
retrieval from a member refer-
enced by a pointer to a structure
or union. However, there seems
to be much confusion about the
use of other C operators with the
member access operators. The
ones that seem to cause the most
confusion are the & (address of)
and the * (indirection) opera-
tors. For the novice, something
like &*p->x might as well be
hieroglyphics. Actually, if you
type in the sample listing in
Figure 2, many of you, novice
and experienced alike, may be
surprised to see exactly what
this construct and derivations of
the construct do.

The use of the member access
operators is mandated strictly by
the operator precedence chart.
This chart (one can be found on
page 137 of the Microsoft® C

24

Figure 2: automatic. However, it would
make your code more cluttered.

Automatic unions and arrays
used to have this problem too.
They have been allowed to be
initialized without constraints
by the ANSI C proposal. Since
this has become common prac-
tice and has been mandated by
ANSI, I would think twice about
any vendor that does not yet
support this.

Comparing Structures
If you were to try to compile

the example code from Figure
1c, you’d find that it produces a
syntax error. This is because you
cannot compare structures or
unions by name the way you’d
perform a structure assignment
(for example, structl = struct?;).
The only way to accomplish the
comparison is by checking each
member of the structure indi-
vidually.

This may sound like a silly
restriction to place on a structure
(like the inability to easily
assign and initialize used to be)
and it is—to an extent. How-
ever, there is a twofold reason

Figure 3: Establishing Operator Precedence
1 & (pfoo->x)
2 *(pfoo->x)
3 &(foo.x)
4 & (*(pfoo->x)) or simply pfoo->x
5 *(& (pfoo->x)) or simply pfoo->x

lems. The alternative is to code
explicit assignments for each
member somewhere in the func-
tion. In terms of efficiency, this
probably isn’t going to make
much of a difference since this is
what the compiler would do
with the initialization of the

MARCH 1989

Figure 4: Advanced Examples of Access Member Operators
Compiler (referred to herein as
MSC) Version 5.1 Language
Reference) makes it clear that
both the dot and arrow operators
have the highest precedence
allowed (along with () and []).
Please remember this. As stated
in “A Guide to Understanding
Even the Most Complex C
Declarations,” MSJ (Vol. 3, No.
5), precedence is also an
important declaration consider-
ation. Knowing what the highest
precedence operators are is one
of the key facts C programmers
should know (meaning have
memorized) since many things
in the language depend upon it.
Also, from a coding viewpoint,
it usually makes reading,
writing, and maintenance a
snap. I cannot emphasize this
point strongly enough.

Figure 2 should now make
more sense. I’ll assume that
most of you are fine until at least
line 13. If we break down each of
the subsequent statements, we
should get the parenthesized
results found in Figure 3 (you can
use it as a guide). Therefore,
since pfoo->x means to access a
member x of a structure, which
is pointed to by pfoo, line 12
says to get the address of the
member x, whose structure is
being accessed indirectly via
pfoo. Note that this does not
mean to take the address of pfoo
and treat it as a pointer to a struc-
ture that contains a member x.

Line 14 instructs the compiler
to get the contents of the mem-
ber x of the structure that pfoo
points to. This works out fine
since x is an int *. However, this
does not mean to treat the con-
tents of the pfoo variable as a
struct pointer to obtain x. If it
meant that, it would be equiv-
alent to pfoo->x, and this obvi-
ously isn’t the case.

Line 16 is a bit interesting to
me since it is a case of operators
negating each other. For
instance, if we were to have a
declaration such as int x, we

1
. ' ' ’.. .. '"'"7.... '

main() f
2 {
3 int var = 9999;
4 int *pvar = &var;
5
6 printf("%d\n”, pvar);
7 print f(”%d\n”, *pvar);
8 printf("%d\n", &pvar);
9 printf(”%d\n", *&pvar);
10 printf("%d\n", &*pvar);
11 printf("\n");
12 printf("%d\n", var);
13 printf("%d\n", &var);
14 printf %d\n”, *&var);
15 printf("%d\n", &*&var);
16 printf("%d\n", *&*&var);
17 }

25

could say *&x. To take this one
step at a time, this construct first
takes the address of x, which
implicitly gets cast into an int *,
and then obtains the contents of
the value of that address. Well,
isn’t that simply the same as
having just used x itself in the
first place? This same form of
destructive interference hap-
pens on line 16 since it’s going to
get the contents of the address of
pfoo->x (and we know it’s going
to interpret it in this way because
of operator precedence).

Finally, although line 17 is
constructed somewhat differ-
ently from line 16, the end
results are the same. However,
the reason is admittedly cryptic
and requires memorization
since it is not immediately intu-
itive. For instance, in the code in
Figure 4, one would expect
&*pvar in line 10 to map into
&9999 since *pvar is 9999
(which is an error, of course,
since you can’t take the address
of a constant). Instead, if we
look at this as though we were
reading it as the address of the
contents of pvar, then since the
contents of pvar is var, its
address is &var. This same logic
applies to line 17 in Figure 2.

I’ve included lines 15, 18, and
19 in case you decide to investi-
gate the example any further. It
might be worth proving to your-
self that you understand the
above by assuming that the dec-
laration of the member x was

changed to char *x. For practice,
given this situation, would you
be able to change the printf for-
mat specifications in Figure 2 to
something more appropriate
(such as %s or %c)?

The sizeof Structure
Another rather cryptic and

nasty sort of thing to be aware of
when using structures is their
size. Basically, what you see is
not necessarily what you get.
But why should you care?

Let me explain by using
another code sample (see Figure
5). I ran it on an 80386 computer
and got the results shown. The
sizeof(char) and the sizeof(int)
print 1 and 4 since this is the size
of a byte and a natural word on a
386 (under UNIX and the DOS
large model). Note that things
seem to be go ing a long
smoothly while printing the
storage space requirements for
chara and charab, but all of a
sudden the space for huh seems
to be out of whack. This is not a
bug in the compiler or in the
program. There are parts of C
that have been allowed to be
classified as undefined behavior
and this is one of those areas. In
this circumstance, huh takes up
8 bytes instead of 5 because intb
uses 4 bytes and it must be
aligned on a word boundary.
Therefore, since chara only uses
one byte, the compiler will insert
a hole of 3 unnamed and inac-
cessible bytes after chara to en-

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 5: Program that Shows Structure Sizes | ■■ v-— s
I #define offsetof(type, identifier) (&(((type *)0)-\

►identifier))
2
3 main()
4 { «
5 struct chara { 1
6 char chara; f
7 };
8 j
9 struct charab {
10 char chara; »
II char charb;
12 };
13
14 struct huh {
15 char chara;
16 int intb;
17 };
18 1
19 struct huh2 { S
20 int intb; r

21 char chara; ;'*■
22);
23
24 printf("%d\n", sizeof(char));
25 printf("%d\n", sizeof(int));
26
27 printf("%d\n", sizeof(struct chara)); 1
28 printf(’'%d\n”, sizeof(struct charab)); b
29 printf(” %d\n", sizeof(struct huh)); <
30 printf(” %d\n", sizeof(struct huh2));
31 1
32 printf("%d\n", offsetof(struct charab, charb)); ‘
33 printf("%d\n", offsetof(struct huh, intb)); p
34 printf("%d\n", offsetof(struct huh2, intb)); f
35 }

I The output for this program on an 80386 computer is:
i
4 ?
1 h
2 L-
8 P
8 P
i L1

4
o b

means that every structure also
has an alignment requirement, a
fact that is not readily apparent.
Note that I’m not talking about
structure tags here since they do
not use any execution time
memory; however, they will
conform to these requirements
and produce the correct sizes
and offsets if interrogated.

In fairness, it is worth men-
tioning that not all CPUs have
this type of alignment require-
ment. Some enforce alignment
only to even addresses, others by
multiples of 2, 4, 8, . . . , bytes.
And others, even though they
would like you to use the sug-
gested alignment, have a lax but
less efficient alignment (that is,
none). Microsoft C (MSC) Ver-
sion 5.1 supports this mechan-
ism if you find that there are too
many wasted holes in your
structures and space is at a pre-
mium. You can enable this by
using the /Zp command-line
switch to CL or by using the
#pragma pack statement within
your code. These two tech-
niques are explained in the
Microsoft C Optimizing Com-
piler Version 5.1 User" s Guide
in section 3.3.15.

Reading/Writing
Structures

Very often it is necessary to
write a structure to a disk file or
RAM or perhaps through a pipe
or other interprocess commu-
nications facility available
under such operating systems as
OS/2 , XENIX, or UNIX.
Because the program “distribut-
ing” the structure may not have
been compiled with the same
packing options or may not even
be running on the same machine
that is responsible for process-
ing any of the data within the
structure, it is advised that you
should always create a dummy
stub program that will dump the
values of the structure before
assuming that the data within it
must be correct. Remember—

sure that intb ends up on the right
boundary alignment.

Some of you may be saying,
“Sure that’s fine, but why not
shift things around so that you
don’t waste any space?” That
doesn’t quite work either as can
be seen when I printed out the
size of huh2. It turns out to be the
same size that huh was. Think
about it—could this be a coinci-
dence because of an inefficient
or lazy compiler or is there some
substance to it? The answer
must be the latter since an array
of type huh2 must be able to be
put in storage in such a way that
all huh2 intb variables would be
word aligned.

Going one step further, this

IN SYSTEMS PROGRAMMING,
AN OPERATING SYSTEM

RESOURCE OR REQUEST
CALL, A DEVICE DRIVER, OR

A SPECIFIC HARDWARE
DEVICE MAY REQUIRE THAT
DATA TRANSFERRED TO OR

FROM IT HAVE SPECIFIC
ALIGNMENT REQUIREMENTS.

CCAN SATISFY THIS
REQUIREMENT VIA UNIONS.

MARCH 1989

alignment restrictions may
create holes; holes change the
physical layout of the structure.
You cannot make assumptions
without seeing the source code
and/or compile options used.

Getting the offsetof
It is generally considered bad

programming style to include
hard-wired constants within
your code. And because of
potential structure holes, it is
neither wise nor portable to use
hard-wired constants to repre-
sent structure member offsets.
For instance, returning to Figure
5, because of the inability to
track it down easily, it would not
be reasonable for you to keep
track of how many bytes into
huh that intb was located.
Instead you should use the
offsetof macro.

The offsetof macro is avail-
able with most recent compiler
releases and can be found in
<stddef.h>. It takes two argu-
ments: a type representing a
structure and a member of that
structure. The result is the offset
of the member in bytes from the
beginning of the structure. I
have included one possible im-
plementation of the macro that
will calculate a member’s off-
set; it should work on most ma-
chines (see the #define offsetof
in Figure 5). The basic idea
behind the way the macro works
is to pretend the structure begins
at address zero [hence the
(type*)0] so that any reference
to any member from address
zero must give its true relative
offset in bytes. You are encour-
aged to type in Figure 5 to ex-
periment with the structures,
especially lines 32-34.

Forcing Type Alignment
Up to this point I have been

emphasizing the use of struc-
tures. Another popular C con-
struct along these lines is the
union construct. It is similar to a
struct in its syntactical nomen-

clature but different in its
semantics. Unfortunately, its
function within C programs is
often misunderstood.

Some of you are probably
curious about my statement that
unions are misunderstood, so let
me define what a union is and
what a union isn’t (or rather,
what it isn’t supposed to be). A
union is a variable that has the
ability to hold one, and only one
of many different types of
named objects (that is, objects
with overlapping storage) at a
given point in time regardless of
the types of those objects. Just
think about that for a moment.
Ramifications of this definition
are as follows:

• The purpose of a union is to
allow for the reuse of a mem-
ory location or variable.

• The memory spaces for all
members of the union begin
at the same address.

• The sizeof (a union) = =
sizeof (the union’s largest
member).

• The value of only one of the
union’s members may be
stored within the union.

• As a style issue, it is desirable
that all the union’s members
are related to a specific piece
of program logic using it.

It should now be clear that
unions can suffice as a method
of forcing type alignment and
for redefining types. Redefini-
tion of types is described in the
next section, and type alignment
is described as follows.

Very often in systems pro-
gramming an operating system
resource or request call, a device
driver, or a specific hardware
device (perhaps using DMA)
may require that data transferred
to or from it have specific align-
ment requirements. Luckily C,
the de facto systems program-
ming language, can satisfy this
requirement via unions.

For example, let’s make a
relatively safe assumption—

MOTHER POPULAR

C CONSTRUCT IS

THE UNION CONSTRUCT.

IT IS SIMILAR TO A STRUCT

IN ITS SYNTACTICAL

NOMENCLATURE BUT

DIFFERENT IN ITS

SEMANTICS. A UNION IS A

VARIABLE THAT HAS THE

ABILITY TO HOLD ONE,

AND ONLY ONE OF MANY

DIFFERENT TYPES OF

NAMED OBJECTS AT

A GIVEN POINT IN TIME

REGARDLESS OF THE TYPES

OF THOSE OBJECTS.

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

: Example of
#define getmemory() RSX

getmemory(); RSX

50 percent chance of getting it
right and even worse odds for
tracking down the bug when
code is changed 6 months down
the road.

If you haven’t guessed
already, the way to ensure that
info can be word aligned is
through something like:

union device_data {
int dummy; /* alignment */
char info[6];
};

Since dummy is word aligned
(why?) and the address of each
member of a union begins at the
same location, info must also be
word aligned! Of course, your
code never needs to be con-
cerned about dummy again
since it has served its purpose.
All very elegant, no?

Redefinitions: Abuse of
Unions?

Because C does not enforce
one facet of unions, namely that
there may only be one object in
use at a time, this is left up to the
programmer. In other words,
you are only supposed to take
from a union what you put into
it; therefore, if you assign to a
particular member, you are only
supposed to retrieve from that
same member until you assign to
another member. The problem
here is that C leaves this up to
you, at least at a syntactical
level. For instance, given the
declarations:

union example {
int i;
double d;
} ex;

int j;

probably no C compiler will
prohibit you from coding:

ex.d = 999.999;
j = i;

even though you’d be guaran-
teed that j wouldn’t hold any-
thing valid, unless perhaps you
were interested in getting a
random number. However, if
you are careful, this side effect
can be turned to occasional

Figure 6a:
20#define RSX

getmemory(); RSX

that most of the time an oper-
ating system or device is to be
word aligned (which taken one
step further on most machines
usually means that there should
be an even address boundary).
Let’s also assume that the info is
to be passed into a hardware
device expecting 6 bytes of
information. Simply coding
something like char info[6];
may or may not necessarily
work since C doesn’t guarantee
that info will begin on an even
address—therefore you’ve got a

IF ANY INITIAL SEGMENT OF
OVERLAPPING STRUCTURES

WITHIN A UNION IS THE
SAME, A WRITE TO ONE

OF THE OBJECTS CAN BE
FOLLOWED BY A READ

FROM ANOTHER OBJECT.

MARCH 1989

#include

20

TYPE2:
.type2.

38

advantage, what I’d like to term
a nonportable nicety—some-
thing I don’t recommend that
you use, but if you do, I hope that
you document the fact and
clearly understand what it is you
are doing.

For example, I was working
on a consulting project last year
that required use of the Intel®
RMX operating system. The
operating system was running
on an 80386, which is a seg-
mented architecture machine.
At one point in the project, we
needed to obtain some dynamic
memory. For some rather obtuse
reason, it was decided that none
of the standard C run-time rou-
tines such as malloc would be
appropriate for what we wanted
to do. Instead we issued an RMX
system call in order to obtain
the memory. The problem we
were faced with then was that
the call returned an entity called
a token, which, every time we
called it, turned out to be the
beginning of a segment. How-
ever, the token only contained a
2-byte segment number and not
the 2-byte zero offset as well,
and we needed to use the token
as a character pointer.

The way we resolved the
problem was by using code sim-
ilar to that listed in Figure 6A.
However, given the reasons that
have already been mentioned,
this technique is not guaranteed
to work under all C compilers.
Furthermore, we’re making the
assumption that pointer = = int
is valid and to make matters
worse, our ordering of the seg-
ment and offset variables are
also system-dependent since
byte or word ordering is hard-
ware-dependent. As you can
see, all in all it is not a very
healthy affair.

Knowing this, many of you
probably are agreeing but also
noticing how easily the conver-
sion routine functioned. Before
this looks too enticing, let’s look
at the preferred method of rede-

29

in many ways, is generally the
less problematic method, and
besides it’s “legal” C.

The reason I am explaining
this is not to teach you a new
trick but to make you aware of a
bad coding practice and to pre-
pare you for the unexpected if it
ever pops up while you are
maintaining a piece of code.
Also, if you do decide to use this
technique, you will know about
the problems that can crop up
because of it.

Unions in General
A more general use of unions

is for building coded records.
Since a union is capable of

fining types: the cast operator.
Figure 6e has a version of
toktoptr that uses casts.

This may look rather ugly and
the cast code is also making
some nonportable assumptions.
The best thing I can say is that
you must recognize that using
unions for redefinitions instead
of as reusable storage may work,
but the method is simply not
valid and is totally nonportable
even among compilers on the
same machine. The chances are
also high that it will produce
incorrect code with many of the
optimizing compilers currently
on the market. The cast,
although also system dependent

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

declaring a valid identifier, it
may appear within a structure
(and vice versa). An example of
this occurs in Figure 7, which
illustrates a case in which a cer-
tain record is obtained, perhaps
through a communications line,
and needs to be processed. Each
record has a code recordtype
signifying what shape it is to
take on so that it can be directed
to the appropriate case of the
switch statement that knows
about it and the names of its
members.

This is a very elegant and
easily maintainable feature of C.
I was able to create a data struc-
ture that did not have to use any
unnecessary data space nor did I
need to resort to playing any
games with pointers to multiple
structures to be able to use the
correct type structure.

Note that contrary to what
was discussed in the preceding
section, you can reuse the first
int of codedrecord’s members
without harm. This is an exten-
sion as a special case. That is, if
any initial segment of overlap-
ping structures within a union is
the same, a write to one of the
objects can be followed by a
read from another object. For
instance, if the logistics behind
the construction of typel and
type2 data structures were sim-
ilar, it would be valid to store a
value in a and then use c with
absolutely no ill effects because
a and c are of the same type and
located at the same offsets. As a
style issue it may even be better
to take a, c, and e out of union
and make it a single entity in
genericrecord. However, this
would depend entirely on the log-
ical connection between these
identifiers as well as the logic
behind the code that uses them.

One last point about unions:
though the draft proposal of
ANSI C now allows for union
initialization to occur in C code,
the initialization must be repre-
sented as a constant expression

and the initialization expression
can only initialize the first
member of the union. This is
something to be aware of if your
compiler does a conversion to a
different type and quietly per-
forms the assignment, perhaps
by truncation. You may have to
swap the order of the variables in
the union in some cases to
ensure proper initialization.

The typedef
Before going into some expla-

na t ions and examples of
typedefs and structures, let me
get two common misconcep-
tions about typedefs and one
source of confusion out of the
way. First, even though the
typedef keyword is syntactically
categorized as a storage class
specifier, it is a misnomer and
does not allocate any execution
time storage. It is only categor-
ized as such for notational con-
venience.

Second and more pertinent to
our discussion is that typedefs
do not create or define a new
type, as the keyword may imply.
What they do is allow the pro-
grammer to create a new name
for a base or derived type that
already exists. In other words, a
typedef allows you to create a
synonym for the type.

Furthermore, the synonym is
placed into the general name
space (an area used to categorize
identifiers) of the compiler’s
symbol table. The general name
space holds function and most
variable and enumeration names
as well. The end result is that
typedef names are practically no
different from any others. That
is to say, they serve to lock into
a name, much like a struct or
union tag does. In this way,
typedef names can be used to
classify identifiers declared
with them.

Finally, an additional source
of confusion with typedef is that
you are not allowed to place any
storage class specifiers within

the type name being created
during a typedef statement. This
is because you are not allowed to
have more than one storage class
specifier within any of your
declarations. Some would say
this is a blessing in disguise
since hiding storage class infor-
mation within a typedef could
result in code that is harder to
maintain and write than it should
be. In other words, it wouldn’t
be directly obvious from the
declaration of a variable based
on the typedef what all its attri-
butes are. It’s a thin line since
I’m not sure what an object-
oriented programmer would say
about this abstraction.

While on this subject, one
more thing to remember is that
while you may not have storage
class specifiers associated with
the typedef name, you can use
the const and volatile type quali-
fiers. However, if you use
incremental typedefs, only one
appearance of a given qualifier
is allowed to be applied to the
previous typedef declarator. I
could be wrong, but I suspect
that many compilers would have
a problem issuing a proper diag-
nostic error about this.

Allocating Structures
There are two common tech-

niques for allocating a structure.
They involve the use of #define
and typedef. Both can be used to
achieve similar goals; however,
their syntax, and amazingly
their semantics, are very differ-
ent. If possible the allocation
should be performed via
typedef. Let’s see why.

Since K&R never elaborated
upon the use of typedef, and
since many of the earlier non-
AT&T® C compilers usually
didn’t support it (possibly for
that reason), until the past few
years typedefs were either
ignored or misunderstood. The
usual method for allocating a
structure was to use the #define
directive. For instance, before

30

MARCH 1989

Figure 8: Examples Comparing #define and typedef
the void keyword became pop-
ular on all compilers, it was
usually suggested to include

#define void int

in all programs, usually via a
programmer supplied include
file, say mydefs.h, that func-
tioned similarly to the macros
currently found in stddef.h.
However, even though this
worked without a hitch (try
compiling the code listed in
Figure 8), it will create problems
with only slightly more compli-
cated type specifications. Do not
get off on the wrong track by
using old code as an example.

The problems appear because
#define is concerned only about
textual substitutions of strings
or tokens of strings. And this is
fine since that is the duty of the
preprocessor. However, it
doesn’t know or care about C
syntax. The preprocessor is only
responsible for accomplishing
the text substitutions; as long as
it is fed a valid C program, it
must emit a valid C program. On
the other hand, since the com-
piler does classify typedef
names, it can and will enforce
type checking of expressions
involving typedefs.

If we use some of the
examples presented by K&R,
whose interpretation is more or
less left as an exercise for the
reader (even in the new revised
second edition), we can investi-
gate why #define will fail. Using
their declaration:

typedef char * String;

the equivalent #define would be:
#define MAXLINES (5)
#define String char *

If we also use their sample invo-
cations of String:

String p,
lineptr[MAXLINES],
alloc(int);

a first glance might not indicate
any problems. However, if we
follow through the text substitu-
tions, the line gets passed (at

31□
1 #define v int /* don’t use void in this example since

it’s a keyword */
2
3 main()
4 {
5 int x;
6 v y;
7
8 x = y;
9 }□
1 typedef int v; /* don't use void in this example since

it’s a keyword */
2
3 main()
4 {
5 int x;
6 v y;
7
8 x = y;
9 1

least as a transparent step) to the
C compiler as:

char * p, lineptr[5],
alloc(int);

certainly not what was desired.
What happened is that only p

was declared as a char *. And
lineptr and alloc were declared
as an array of char and a function
returning char, respectively. We
were trying to obtain:

char *p, *lineptr[5],
*alloc(int);

Besides the #define problem,
this also points out a pitfail of
using a multideclarator declara-
tion. You were warned of this in
“A Guide to Understanding
Even the Most Complex C
Declarations.”

As another simple case in
which #define could not pos-
sibly work, consider:

typedef int * array20[20];

There’s just no way to coerce it
to produce:

array20 samplearray;

Finally, relating all this back
to structs and unions, there are
also the type checking capabil-
ities of the compiler that are a
concern to us. For instance,
using K&R’s Treenode exam-

THOUGH THE DRAFT
PROPOSAL OF ANSI C

NOW ALLOWS FOR
UNION INITIALIZATION TO

OCCUR IN C CODE,
THE INITIALIZATION MUST

BE PRESENTED AS A
CONSTANT EXPRESSION
AND THE INITIALIZATION
EXPRESSION CAN ONLY

INITIALIZE THE FIRST
MEMBER OF THE UNION.

THIS IS SOMETHING
TO BE AWARE OF IF YOUR

COMPILER DOES A
CONVERSION TO

A DIFFERENT TYPE.

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

pie, an equivalent define (ignor-
ing Treeptr for our purposes)
would be:
#define Treenode struct {\
char *word;\
int count;\
}

Invocations of this might appear
as follows:
Treenode tnl, tn2;
Treenode tn3, *ptn;

However, although tnl and
tn2 are assignment and member
compatible, they have nothing to
do with other declarations that
might use Treenode even if they
are pointers such as ptn. There-
fore:
tnl = tn2;
tnl.count = tn2.count;

are fine, but:
tnl = tn3;
ptn = &tnl;

are undoubtedly syntax errors.
To make matters worse, if we

use the style constraint of one
declarator per declaration:
Treenode tnl;
Treenode tn2;
Treenode tn3;
Treenode *ptn;

none of these have the ability to
have anything to do with the
others—if we perform the pre-
processor substitution, we get
four unnamed yet distinct struc-
ture tags. The compiler doesn’t
care that they might all look the
same. Every invocation of
Treenode will create a new
structure.

If instead we (properly) use a
typedef:
typedef struct {
char * word;
int count;
} Treenode;

all the executable statements
above are valid. The compiler
only creates one reference to the
struct in the symbol table and
after that everything falls into
place including type checking.
All is now syntactically sound.
Since a typedef is C code, all the
Treenode invocations will have

the same type.

Proper Perspective
The basics of structures and

unions are well defined and
most programmers are capable
of using them with reasonably
good results. However using
them to their full capacity and in
a portable way requires a bit
more knowledge than common-
ly available. This also applies to
typedef, which has often been
either neglected or misunder-
stood {typedef becomes very
important under the OS/2 and
Presentation Manager pro-
gramming environments—Ed.).
Since a structure is the main data
construct in C (as well as in
many other languages), now that
you have these facts under your
belt, you should have a better
understanding of the C lan-
guage. You can use it to your
advantage in a wise, efficient,
and portable manner.

Skipping over any detail of a
language specification is a mis-
take. Certainly some things are
useless and awkward, but it’s
disappointing to think that many
programmers avoid parts of lan-
guages simply because they are
somewhat complicated. Though
C is many times a very terse
language and often cryptic, an
understanding of its more subtle
and complex points opens up
C’s unique power.

My own experience with C,
as well as that of other pro-
grammers, clearly shows that
continuing to use it while not
understanding it is not helpful.
This usually results in slower
development and mistakes that
will be costly. If you stick with it
and put in that extra energy to
understand its advanced syntax
and especially the underlying
philosophy, you will be able to
tap into its most powerful and
advanced features.

WuE BASICS OF

STRUCTURES AND UNIONS

ARE WELL DEFINED AND

MOST PROGRAMMERS ARE

CAPABLE OF USING THEM

WITH REASONABLY GOOD

RESULTS. HOWEVER USING

THEM TO THEIR FULL

CAPACITY REQUIRES A BIT

MORE KNOWLEDGE THAN

COMMONLY AVAILABLE. THIS

ALSO APPLIES TO TYPEDEF,

WHICH HAS OFTEN BEEN

EITHER NEGLECTED OR

MISUNDERSTOOD.

MARCH 1989

33Whitewater's Actor8: An
Introduction to Object-Oriented
Programming Concepts
Zack Urlocker

bject-onented programming
techniques are not new, but they are becoming more
popular as programmers tackle increasingly
complex projects. Object-oriented programming
can help simplify the development of elaborate

programs by breaking them down into logical objects that manage
their own behavior and hide internal complexity. Windowing
applications in particular are
easier to develop and maintain if
object-oriented programming
techniques are used. Although
object-oriented programming is
best done in a pure object-
oriented language, such as
Actor® or Smalltalk, it can also
be used in other languages.

This article provides an over-
view of object-oriented pro-
gramming, demonstrating how
it can simplify the development
of Windows programs. If you
haven’t done much program-
ming in Microsoft® Windows,
some knowledge about object-
oriented programming can help
you understand how Windows
works. Most of the sample code
is taken from PC-Project, a
critical path project manage-
ment program that I wrote in
Actor.

PC-Project lets you model a
real-world project by creating
milestones and tasks, assigning
times, and determining the crit-
ical path of the project. The crit-
ical path shows which activities,
if delayed, will cause a delay in
the overall completion of the
project. PC-Project also lets you

I w
| Help! Fl"

PC-Pro jec t ; D:\HSJ\THISISH\URLOCKER\HOUSE.PRJ
File New Delete View Options

It
3/1/88 3/1/88 3/8/88 3/11/88 3/11/88 3/14/88 3/25/88

!uy — Move eady Paint LlCarpet nd!tart

Gantt Chart 3/11/88
I Help! Fl

Furnish

*Start

Resources

*Move

*Ready

Paint

*Furnish

Carpet

3/1/88

Narae Max Use FC UC Activities

Lawyer 7 568 0 Buy
Pete 6 8 10 Paint Move
Beer 6 20 0 Paint Move
Furnit 14 500 0 Furnish
Paint 3 200 0 Paint
Mark 11 8 20 Paint Carpet Move
Car 17 30 0 Furnish Move
Tin 19 0 0 Furnish Carpet

Figure 1 The PC-Project application
running under Windows, displaying a PERT
diagram, a Gantt Chart, and the resources
required for the project.

allocate resources and costs to
tasks and create a Gantt time-
line chart of the project.
PC-Project is available with
complete source code from var-
ious Bulletin Board systems or
directly from the author. Figure 1

Zack Urlocker is manager of developer relations at The Whitewater Group®,
the developers of Actor.

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

34
which types of data, most pro-
cedural languages offer no
formal support for this corre-
spondence; it is entirely the
programmer’s responsibility to
manage such an abstraction.

In an object-oriented lan-
guage, both data and operations
that work with that data are
combined into a single logical
unit known as an object.
Dividing a program into objects
encompassing both data and
operations makes the program
more closely represent the logi-
cal design that is being imple-
mented. As a result, object-
oriented programs are generally
easier to understand and main-
tain than procedural programs.

Object-oriented program-
ming encourages the creation of
abstract data types; that is, the
implementation of an object is
referred to abstractly and is
encapsulated by high-level
operations. Objects have a clear
division between public
protocol and private imple-
mentation. For example, we
might have a stack object that
defines a public protocol based
on the push and pop operations.
The stack may be implemented
as an array with variables that
maintains the first and last
positions, but this representa-
tion would be considered
private. By adhering to the
public protocol, we can change
the implementation of stacks,
say, to linked lists, without
having to rewrite any of our
code. Figure 2 illustrates a stack
object and the separation of
public protocol and private
implementation.

Programming in an object-
oriented language involves
creating objects and sending
them commands or messages to
do things. For example, we can
create a window with the cap-
tion Sample and then show it on
the screen. In Actor, this is done
using the messages shown
below:

A Stack Object

push pop

f rst

last
new

Public protocol
based on new,
push, pop
operations

Private data and
private stack
implementation:
first ... last

Figure 2 A stack object, such as the one shown here, illustrates the
separation between the publicly available protocol (new, push, pop) and the
private stack implementation (first, last).

Figure 3: Classes in PC-Project 1

ProjWindow Window that can display a PERT diagram
GanttWindow Window that can display a Gantt chart

ActivDialog Formal class of dialog box for activities
MStoneDialog Dialog box for editing Milestones
TaskDialog Dialog box for editing Tasks
PERTDialog Dialog box for editing PERTTasks

Network Generic network of nodes with a start and end
Node Generic node capable of connecting itself ■

Project Network that knows the critical path method
Activity Node with an earlyStart and lateFinish 'j
Milestone An activity that uses no time or resources •
Task An activity that has time, resources, and cost
PERTTask Task where the time is estimated by PERT

Resource Used by a task; has a name and cost '

shows the PC-Project applica-
tion running under Windows.

What Is Object-Oriented ?
In traditional procedural lan-

guages like C or Pascal, the
programmer defines data struc-
tures and writes functions and
procedures to operate on the
data. Although normally a
correspondence exists between
which functions operate on

IN AN OBJECT-ORIENTED
LANGUAGE, BOTH DATA AND
OPERATIONS THAT WORK ON

THAT DATA ARE COMBINED
INTO A SINGLE LOGICAL UNIT

KNOWN AS AN OBJECT.

MARCH 1989

35A Brief Introduction to Actor

ctor, designed and created by The
Whitewater Group, is an object-oriented

language that allows you to create standalone
MicrosoftWindows applications. Since Actor is an
interactive environment that runs under Windows,
you can type statements in the workspace window
and get immediate feedback. Windows, menus,
and dialogs can be created and modified directly in
the development environment. Actor has a source-
level debugger and an inspector that lets you debug
programs interactively.

Code is written in a browser, a special editor that
lets you create new classes and compiles methods
as you write them. The compiler translates Actor
statements into a low-level format used at run time.

Actor Workspace
F i le Edi t Do i t ! i nspec t ! Browse! Cleanup!

| Show Roon! U t i l i t y Templates Denos!_________

PW := defaultNew(ProjWindow, "PC-Pro jec t ") ; [
show(PW,l) ; b

I .

Browser: ProjWindow
| Accept! Edi t Do i t ! i nspec t ! Options U t i l i t y

j Templates __
f v is ib le
— windowToBisp

WM_HSCROLL
“ WM_KEVDOWN

f hWnd
= defProc

parent
— cRect
▼IpaintStruct

Window
AboutWindow
GanttWindow
Pro jWindow

WbLLBUTTONDO_________________jv.____________________

k* See i f the user has c l i cked on a box in the char t .
I f so, br ing up a d ia log for ed i t ing . * /

Def WM_LBUTTONDOWN(self , wp, Ip I dPo in t , ac t i v i t y)
< dPoint := windowToDisplay(self , asPo in t (lp)) ;

ac t i v i t y := displayLookup (pro ject , dPo in t) ;
/» log ica l l y true i f found * /
/ * c l i cked on ac t i v i t y * /
/ * f a lse i f no th ing found * /
/ * c l i cked on dead space * /

TextWindow

ac t iv i t y := — „ __
i f ac t i v i t y

ed i t ln fo (ac t iv i t y)
else

beep() ;
end i f ;

The browser also shows the hierarchy of classes in
the system. Figure A shows a screen shot of a
browser in the Actor development environment.

Actor is a pure object-oriented language. That
means that everything in the system is an object and
all operations are performed by sending messages
to objects. Even an expression like 5 * X is a
message to X to multiply itself by 5. In hybrid
languages such as C++, some things are objects
that respond to messages and others are not.

Actor’s syntax is a combination of Pascal and C.
For example, the := symbol is used for assignment,
whereas curly braces, { }, denote a block.
Comments appear within C-style delimiters, /* and
*/. Actor includes an if/else statement, a case/select
statement, while loops, and so on.

Method definitions begin with the keyword Def,
followed by the name of the method and parameters within parentheses. The first parameter in a method definition is the
receiver of the message.and is always called self. The vertical bar, I, is used to separate arguments from temporary local
variables. No type definitions are necessary, since Actor determines the class of an object at run time. The sample method
definition shown in Figure B has two arguments, resource and parent, and one local variable, retValue.

The caret, A, is used to return a value. If no value is explicitly returned, the receiver of the message, self, is returned.
This very brief view of Actor indicates that it has a relatively standard procedural language syntax. It differs from

procedural languages in the way it is programmed. Programming in Actor can be summarized as the process of creating
objects and sending messages to the objects. Messages provide the objects with the information necessary to execute a
method. In a sense, the message is matched to a method already defined within the object. Actor is dedicated to the goal
of creating high-level applications that hide complex underlying issues.

HQ □1

Figure A

Def run(self, resource, parent | retValue)
{

retvalue := runModal(self, resource, parent);
if retvalue == -1

beep();
errorBox("Warning", "Low on memory’");

endif;
AretValue;

Figure B A sample method for the Dialog class that
checks Windows memory when running a dialog box.

For more information about Actor, contact:
The Whitewater Group
Technology Innovation Center
906 University Place
Evanston, IL 60201
(312) 491-2370

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

36 Options

3/1/88 3/1/88 3/8/88 3 /11 /88 3/11/88 3/14/88 3/25/88

leads*

3/11/88

Name

3/11/88 3/11/88

3/11/88 3/11/88

/* create it */
W := defaultNew(

Window, "Sample");
show(W, 1);/* display it */
close(W); /* close it */

In this case Window is a pre-
defined Actor class or type of
object already in the system.
Therefore dozens of lines of
code are eliminated that would
otherwise have to be written in C
to accomplish the same thing
without affecting performance.
Window objects have private
data that manage their location,
size, caption, parent, handle,
and so on. Window objects
know how to create themselves,
position themselves on the
screen, resize, close, and so on,
as part of their public protocol.
Thus, the statement close(W); is
a message being sent to the W
window to close itself.

Although it may seem that
messages are the same as func-
tion calls in other languages,
they are not. The receiver of a
message, which is the first
parameter after the parenthesis,
determines how to respond.
Different classes of objects can
respond to the same message in
different ways, a language
characteristic known as poly-
morphism.

For example, if W were a
member of the ProjWindow
class that received a close
message, it would first check to
make sure that the current pro-
ject was saved. If W were a
member of the GanttWindow
class, it would inform its parent
window that it was closing. In
fact, W doesn’t even need to be
a window at all. Other objects,
such as files or communication
channels, could respond to a
close message.

Polymorphism is achieved in
Actor by defining a method,
with the corresponding message
name, for the class. A method
definition is similar to a function
definition in other languages.
Polymorphism allows you to

This screen
shows the

information
related to the

critical
milestone

Ready. Note the
output to both

Paint and
Furnish tasks.

IW
Options

3/1/88 3/1/88 3/8/88 3 /11/88 3 /11/88 3/14/88 3/25/88

Descr ip t ion [Mortgage ftpprovaTNane

L ike ly

3500

Resources

Input

Slack

Adding a
noncritical
PERTTask

called Mortgage
to HOUSE.PRJ.
Its input is from
the milestone
start and its

output is to the
task Move.

Options

3 /8 /88 3 /11 /88 3 /11 /88 3/25 /88

.Move iReady

Mortgage Approval

MaxNone

[3500

1 /1 /80 1 /1 /80

1 /1 /80 Slack

Defining
additional

parameters for
the resource

Lawyers.

MARCH 1989

write more general, reusable
code, since you don’t have to
worry about what types of
objects you are dealing with, as
long as they follow the same
public protocol. You can let the
objects themselves manage the
details of implementation.

Inheritance
Objects are organized hier-

archically in classes. Most
object-oriented languages
include classes for things like
arrays, files, strings, stacks, and
queues. In Actor there are also
predefined classes for dealing
with such Windows entities as
text windows, dialog boxes, and
scroll bars.

We can create new subclasses
that inherit all the character-
istics of an existing class. For
example, in PC-Project the
ProjWindow class descends
from the Window class and adds
to it functionality related to
project management. Because
of this inheritance capability,
classes are much more powerful
than data types in other lan-
guages. The advantage is that all
the generic windowing capabil-
ities, like resizing, displaying,
and dragging work properly
without your having to write or
test a single line of code. Using
inheritance you focus on those
parts of the program that are
application-specific instead of
constantly “reinventing the win-
dow,” so to speak.

Inheritance encourages the
development of small, reusable
classes that become building
blocks for more sophisticated
classes. This approach results
in less code to maintain and
test and more rapid develop-
ment from prototype to final
application.

In PC-Project I used inheri-
tance to group the character-
istics that are common to the
dialog boxes used for editing
activities and for the activities
themselves. Figure 3 describes

Windows
Object NodeNetwork Resource

Dialog Window

Dialog
Gantt-

Window
TaskMilestone

Window

MStone-
Dialog

Task

Task-
Dialog

Dialog

Figure 4 The class tree diagram
illustrates the classes in PC-Project. Note that
all classes descend from Object.

the classes in PC-Project.
Figure 4 shows how they are
related in the class tree.

How does object-oriented
programming work with pro-
cedural languages? Purists
maintain that object-oriented
programming is possible only in
a late-bound language that has a
class facility and inheritance.
However, object-oriented de-
sign techniques are applicable
in many languages. For
example, both Ada and Modula-
2 include facilities that allow the
creation of abstract data types.
You can also add object-
oriented extensions to C by
using a C++ preprocessor. Any
program can be designed, if not
implemented, as logical objects
that encompass data and opera-
tions with a clear separation of
public protocol and private
implementation.

Many programmers are

MOST OBJECT-ORIENTED
LANGUAGES INCLUDE

CLASSES FOR THINGS LIKE
ARRAYS, FILES, STRINGS,
STACKS, AND QUEUES.

IN ACTOR THERE ARE ALSO
PREDEFINED CLASSES FOR

DEALING WITH SUCH
WINDOWS ENTITIES AS TEXT
WINDOWS, DIALOG BOXES,

AND SCROLL BARS.

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

38 WINDOWS ENVIRONMENT

PC-PROJECT

!S |PC-Pro jec t : D : \MSJXTHIS ISHXURLOCKER\TEST .PRJ
F i le New De le te V iew Opt ions

Windows messages:
WM_PAINT

WM_COMMAND
etc.

Windows Function Calls:
TextOut

SendMessage
etc.

f \
EndT4

Figure 5
An Actor

ProjWindow
object is an

abstraction of
a window

managed by
Windows.
Windows

messages are
automatically
translated into

Actor
messages.

“Windows message.” Other
Windows messages are
WM.COMMAND (indicating
the user selected a menu com-
mand), WM_LBUTTONDOWN
(the user clicked the left mouse
button), WM_VSCROLL (the
user clicked in the vertical scroll
bar), and WM_PAINT (Win-
dows wants the window to
redraw itself).

Windows messages are
always sent with two parameters
to convey additional informa-
tion. These are known as the
word parameter, or wParam,
and the long parameter, or
IParam. The wParam contains a
16-bit word value; the IParam
sometimes contains a 32-bit
long pointer to other data.

If an application has multiple
windows, as PC-Project does,
the Windows messages are sent
to the appropriate window. For
example, if you press the Fl
function key while the Gantt
window has the focus, a
message is sent to that window;
the main window is not
informed. Making windows re-

sponsible only for their own
events simplifies application
development.

Actor Objects
The relationship between

Actor objects and Windows
entities is similar to the relation-
ship between file variables and
files in most high-level lan-
guages. For example, in Pascal,
you can declare a variable of
type File. To use the variable,
however, you must assign it the
name of an actual disk file. The
file variable is an abstraction of
the physical file on disk. In the
same way, Actor objects
belonging to classes like Win-
dow and Dialog are abstractions
of underlying areas of memory
managed by Windows.

Although both Actor and
Windows send messages, the
messages are processed separ-
ately. Unlike Windows mess-
ages, Actor messages are not
queued at all and are therefore
very efficient. The main func-
tion in a Windows application,
called WinMain, normally

pleasantly surprised to find that
object-oriented languages en-
courage them to use techniques
they have been faking for years
in other languages. Through the
rest of this article I encourage
you to consider how object-
oriented techniques could be
used in your current language.

Windows
Windows , l ike ob j ec t -

oriented languages, operates on
a message-passing paradigm.
Windows is an event-driven
system, meaning that programs
respond to events that the user or
other programs initiate. These
events correspond to actions
like pressing a key, clicking the
mouse, or selecting a menu item.
Whenever an event occurs,
Windows sends a message to
notify the program.

More specifically, when the
user presses a key, for ex-
ample, Windows sends a
WM_KEYDOWN message
with the virtual key code of
the key that was pressed. The
“WM” is mnemon ic for

MARCH 1989

39WINDOWS ENVIRONMENT

Actor

paint
command

etc.

command new

Actor
messages to

and from other
Actor objects

Actor
messages
related to
Windows

Actor/Windows
message

translation

handle
loc
etc.

paint

Printline
WMHSCROLL

etc.

Other Actor
ObjectsA ProjWindow object

includes a very short loop that
translates and dispatches Win-
dows messages. The application
must also define a WndProc
function that processes the
messages.

From an object-oriented per-
spective, it is the window itself
that responds to the messages.
After all, a window is not just a
data structure, it is both the data
and the functionality. Thus,
Actor manages the WinMain
and WndProc functions, the
Windows message queue, and
other low-level details.

Actor automatically trans-
lates Windows messages into
equivalent Actor messages,
enabling you to process all
messages in the same way. The
Actor classes Window and
WindowsObject define many
high-level messages that hide
the generic details of Windows
programming and allow the
programmer to concentrate on
application specific behavior.
Figure 5 shows the flow of mes-
sages between Windows and
Actor objects.

The WM.PAINT method de-
fined in the Actor class Window,
automatically locks down an
area of memory known as a
display context used for
redrawing. It then calls the
Windows function BeginPaint,
sends an Actor paint message,
calls the EndPaint function, and
lastly frees the memory used for
drawing.

The WM.PAINT method
defined for class Window is
shown in Figure 6. Since this
method is inherited by all de-
scendants of the class Window,
they only need to define a
higher-level paint method that
knows how to redraw the con-
tents of the window. The Actor
paint message will be sent
whenever Windows sends a
WM_PAINT message.

In PC-Pro j ec t , t he
ProjWindow class defines a
paint method to redraw a net-
work or PERT diagram of the
project. The paint method,
shown in Figure 7, includes no
calls to Windows functions to
manage the display context,

since this job will be handled by
the WM_PAINT method of the
Window class.

The paint method loops
through all the nodes in the
project, and if a node is visible, it
sends a draw message to the
node. To determine where to
draw a node, a pos message is
sent to the node to get its logical
display position. For example,
the first node in a project is at the
logical display position (0,0).
This position is converted into
the Windows coordinate (10,30)
by sending a displayToWindow
message to the window, with the
logical display position as an
argument.

Notice that while it is the
node’s responsibility to manage
its logical location, it is the
window’s responsibility to
determine if the node is visible
and convert the logical display
location into its own Windows
coordinates. Again, the goal in
object-oriented programming is
to let the objects manage their
own behavior as much as
possible.

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 6: WM

Window

hDC :
hPS :

hDC, hPS, IpPS)WM_PAINT(self

hPShPS :

hDChDC
hDC)

memory

sendMessage function with a
handle to the window that will
receive the message, the Win-
dows message constant, and
the wParam and IParam argu-
ments, thus:
sendMessage(W.hWnd,

WM_VSCROLL,
SB_LINEUP,
0L); /* C */

Since Actor automatically
translates Windows messages
into Actor messages of the same
name, there is no need to call the
sendMessage function (though
you could if you wanted to). In-
stead the scroll message can be
sent directly to the W window:
WM_VSCROLL(W, SB_LINEUP,

0L); /* Actor */

Actor will then call the
sendMessage function with
appropriate arguments. Note
that in Actor the internal repre-
sentation of the window and its
handle are hidden; the window
object is responsible for man-
aging its data and responding to
all messages. Of course, you
could define a higher-level
me thod , pe rhaps ca l l ed
scrollUp, that would hide the
details of the WM.VSCROLL
message and SB_LINEUP
constant.

Once you understand how
Windows sends messages in
response to user events, a basic
principle of object-oriented pro-
gramming should become clear:
objects are like event-driven
data structures. This similarity
makes programming for a win-
dowing environment with an
object-oriented language very
natural.

A Keyboard Interface
Messages can easily be used

to create a keyboard interface.
Although PC-Project uses the
mouse extensively, I wanted to
make sure that the user could use
the keyboard if he/she preferred
to. Windows provides auto-
matic support for keyboard
menu commands, but what

40

Figure 7: The Paint Method Defined for the Class ProjWindow

/* Respond to MS-Windows messages to paint the window as a PERT

(network) diagram.
Draw each visible node in its proper position.
Display the name and any other info required.
Then draw the lines to connect the outputs of the node.

self is the ProjWindow that receives the message.
hDC, a handle to a display context, is sent as an arg.

wPoint, x, y are local variables.
aNode is the temporary loop variable for the do message.

*/
Def paint(self, hDC | wPoint, x, y)

{
do(nodes(project),

{using(aNode)

wPoint := displayToWindow(self, pos(aNode));

x := x(wPoint); /* horiz windows posn */
y :« y(wPoint); /* vert windows posn */

if visible(self, aNode)
draw(aNode, self, x, y, hDC);
drawTextlnfo(self, aNode, x, y, hDC);

endlf;

/* always draw connections since they may be visible */

drawconnections(self, aNode,x,y, getOutputs(aNode),hDC);

});

a WM_VSCROLL Windows
message to the window.

When a scroll message is sent,
the wParam argument indicates
the scroll direction, defined by a
constant such as SB_LINEUP
or SB_LINEDOWN. (The “SB”
is mnemonic for “scroll bar.”) In
the case of a scroll message, the
IParam argument is ignored, so
by convention we send a long
zero, 0L.

To send a scroll message to a
window using C, we call the

Windows Messages
In addition to Windows

sending messages, like the
WM_PAINT message de-
scribed above, window objects
can send messages to other
windows or even to themselves.
For example, in PC-Project if
the user presses the up arrow, the
window will scroll up as
necessary. This is done by
trapping the WM_KEYDOWN
Windows message and sending

MARCH 1989

about scrolling and selecting
activities? Normally these are
done by clicking the mouse in a
scroll bar or clicking on an
activity in the project window.

I was able to trap all key
presses and simulate mouse
actions in the main window of
PC-Project by defining a
WM.KEYDOWN method for
the ProjWindow class. For
example, if the user presses
the up arrow, a WM.VSCROLL
message is sent. If he/she
presses the F2 function key or
Enter, a WM.LBUTTONDOWN
message is sent.

After years of conditioning
with Lotus® 1-2-3®, many PC
users intuitively press the slash
(/) key to enter commands. Even
Microsoft Excel, a model Win-
dows program, employs this
method as an alternative to the
Windows user interface. Simil-
arly, programs such as Micro-
soft Word use the Esc key to
bring up the command menu. I
wanted PC-Project to accom-
modate all these different user
interfaces. But how?

Windows allows us to define
accelerator keys that trigger
WM_COMMAND messages
rather than WM.KEYDOWN
messages. The accelerator table
is written as part of a resource
script file and is separate from
the application’s source code.

I defined the slash and Esc
keys as accelerators that would
send a WM.COMMAND Win-
dows message with the wParam
argument as the constant
PW.COMMAND.MODE.
The WM.COMMAND mess-
age is trapped so that when
wParam has the va lue
PW.COMMAND.MODE, an
Actor commandMode message
is sent. If the keys are defined as
accelerators, rather than trapped
as in the WM.KEYDOWN
method, they work in all win-
dows of the application and
there is no need to remove the
keystroke from the input buffer.

41PROJECT.RC

; Accelerators are used to enhance the keyboard interface
; note: cursor keys are not defined as accelerators and are
; trapped in the WM.KEYDOWN for ProjWindow

#define VK_SLASH 191 ; For Lotus-like commands

PC-Project ACCELERATORS
BEGIN

VK.SLASH, PW.COMMAND.MODE, VIRTKEY
VK.ESC, PW.COMMAND.MODE, VIRTKEY
VK Fl, PW.HELP, VIRTKEY
" Ao” , PW.FILE.OPEN
" An", PW~FILE~NEW

END

How to Trap WMCOMMAND and commandMode Messages

/* Handle menu events and accelerator keys identically,
self refers to the ProjWindow that receives the message.

*/
Def WM COMMAND(self, wParam, IParam)
{

select
case wParam == PW_FILE_OPEN /* AO or menu */

fileOpenAs(self);
endCase
case wParam PW_FILE_NEW /* AN or menu */

fileNew(self);
endCase

<other cases omitted... >

case wParam == PW.HELP /* Fl or menu */
help(self);

endCase
case wParam »» PW.COMMAND.MODE /* slash or Esc */

commandMode(self);
endCase

endselect;
}
/* Enter "command mode" in response to a slash key

accelerator. This simulates Lotus 1-2-3 style
commands by sending an Alt key sysCommand message. */

Def commandMode(self)

WM.SYSCOMMAND(self, OxFlOO, OL);

Figures The accelerators used by PC-Project are shown here. The
source code following them depicts how WM COMMAND and
commandMode messages are trapped.

Figure 9: Initializing a Dictionary
/* initialize the actions dictionary */

actions := new(Dictionary, 10);
actions[PW.FILE.OPEN] := #fileOpenAs;
actions[PW.FILE~NEW] := #fileNew;

• other cases omitted>

actions[PW.HELP] := #help;
actions[PW.COMMAND.MODE] := #commandMode;

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

: Trapping a Mouse Click
. The/* Respond

point in tl
d i sp lay

. The v<
ge . The

WMJLBUTTONDOWN (s e l f ,

IParam) ;
dPo in t)

The editinfo Method for Class Activity and Descendants

se tEdi t l t em (d ig , s e l f) ;
retValue run (d ig , ThePort)
showOldCurs () ;

Def command (s e l f , vrParam, IParam)
{

per form(se l f , ac t ions [wParam]) ;

42
case statement that determines
what action to take. Although
this approach works, it is not
very object-oriented. A more
typical approach in Actor would
be to write a method called com-
mand that eliminates the case
statement by using a lookup
table known as a dictionary.
Dictionary is a predefined Actor
class that allows array-like
access to elements of a collec-
tion using arbitrary keys.

For example, we would create
a dictionary called actions that
used as its key the values of the
wParam argument and as values
the literal message to be sent.
The pound symbol (#) is used to
specify a literal symbol name.
The dictionary would be initial-
ized as shown in Figure 9. The
command method becomes
much shorter; we simply look up
the message in the actions dic-
tionary and perform it. Compare
this method, as shown in Figure
10, to the one shown in Figure 8.

Writing the command method
in this way makes it much easier
for descendant classes to modify
their behavior without having to
redefine the entire method. They
only have to add or change ele-
ments in the actions table. This
approach leads to much better
code reusability than is possible
with the procedural approach.

Dialog Boxes
Dialog boxes represent a

more advanced challenge. In
PC-Project I needed several
types of dialog boxes to allow
data to be edited. For example,
when the user clicks the mouse
button in the project window, I
want to bring up a dialog box
that lets the user edit the selected
activity’s name, description,
starting date, and so on. This is
complicated slightly by the fact
that different types of activities
have different data and thus re-
quire different dialog boxes. For
example, tasks have time and
cost, whereas milestones do not.

Figure 10 In an object-oriented approach to handling menu events, the
action is looked up and the operation performed.

The source code in Figure 8
shows how the resources are
defined as well as how the
WM.COMMAND and
commandMode messages are
trapped. You can use these tech-
niques to add a keyboard user
interface to your own Windows
programs in Actor or C.

The WM.COMMAND
method is written in essentially
the same style as would be used
in C, by employing a lengthy

But the question remained, how
to respond to the commandMode
message in order to activate the
menu bar without selecting any
item? To answer this question, I
used the SPY.EXE utility of the
Microsoft Windows Software
Development Kit to see what
messages Microsoft Excel sends
when the slash key is pressed. It
sends a WM_S YSCOMMAND
message with the constant
F100H.

MARCH 1989

Figure 12: Methods for the ActivDialog Class

/* This is a formal class to define behavior common to the various
activity dialog boxes in PC-Project. Descendants should define the
res() method to return the resource ID to be used, initDialogO to
initialize additional fields, and update() to update values in the
activity.

ActivDialog descends from class Dialog and inherits all
of its methods and variables.

*/

/* Set the object being edited. */
Def setEditItem(self, anEditltem)
{

activity := anEditltem;
}

/* Run the dialog with the appropriate resource. */
Def run(self, parent | retValue)
{

ArunModal(self, res(self), parent);
}

/* initialize all of the fields in the dialog.
Descendants may wish to initialize additional fields or override
this method.

*/
Def initDialog(self, wParam, Ip)
{

setText(self, makeCaption(activity));

setltemText(self, NAME, getName(activity));
setltemText(self, DESC, getDesc(activity));
setltemText(self, UES, getUserEarlyStart(activity));
setltemText(self, ULF, getUserLateFinish(activity));
setltemText(self, ES, asString(getEarlyStart(activity)));
setltemText(self, EF, asString(getEarlyFinish(activity)));
setltemText(self, LS, asString(getLateStart(activity)));
setltemText(self, LF, asString(getLateFinish(activity)));
setltemText(self, SLACK, asString(getSlack(activity)));

}

/* Handle the Ok and Cancel buttons. If Ok was clicked, then update
the activity. This command method is used by descendants. They
will define their own update method. */

Def command(self, wParam, IParam)
{

select
case wParam IDOK

update(self);
end(self, IDOK);

endCase
case wParam »» IDCANCEL

end(self, IDCANCEL);
endCase
default

Al; /* ignore it */
endSelect;
A0;

Because all the activity
classes—that is, Milestones,
Tasks, and PERTTasks (tasks
with an estimated time)—are
logically similar, they descend
from a single class called
Activity. The Activity class is
known as a formal class, since
we will never create objects of
that class, only objects of the
descendant classes.

By making good use of inher-
itance, we can minimize the
amount of code that needs to be
written. A general editinfo
method can be written for the
Activity class that will be inher-
ited by Milestone, Task, and
PERTTask. When the user
clicks on an activity in the
project window, we determine
which activity is selected and
then send it an editinfo message.

However, the editinfo method
must be able to run the appro-
priate dialog box for each type of
activity. How do we know
which type of dialog box to run?
We simply send a message to the
activity. Descendants of the
Activity class that use the
editinfo method should define a
method called dialogClass that
returns the type of dialog to use
when editing. The dialogClass
method is considered part of the
public protocol for activities.

The source code to trap the
mouse click and edit an activity
in Figure 11 shows the
WM_LBUTTONDOWN meth-
od for the ProjWindow class.

In the same way that the
Milestone class descends from
the formal class Activity, the
MStoneDialog class descends
f rom the fo rma l c l a s s
ActivDialog, which in turn
descends from the Actor class
Dialog. In this section I will use
higher-level Actor methods that
hide some of the details of pro-
gramming dialog boxes.

Dialogs are created by
sending the dialog objects a
runModal message. The
runModal message requires as

MStoneDialog class [in black bar]

/* The MStoneDialog class descends from class ActivDialog
and inherits all of its methods and variables.

*/

/* Return the resource ID used with this dialog box. */
Def res(self)
{

AMSTONE_BOX;

/* Initialize additional fields in the dialog.
Uses the ancestor's initDialog first.

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 12 —MJJLJIJUJ-liJMI

44 clicks on OK, an update mess-
age is sent to the dialog box.
Although the command method
is defined in the ActivDialog
class, it is inherited by the
MStoneDialog, TaskDialog,
and PERTDialog classes, which
define their own update method.
The update method sends
several other messages, includ-
ing setValues, which informs
the activity that was being edited
of its new values so that it can
take appropriate action. The
code required for the dialog box
classes is shown in Figure 12.

The other dialog classes, like
TaskDialog or PERTDialog,
work in a similar fashion, but
they require less code because of
inheritance. They merely have
to initialize any additional edit
controls in the initDialog mess-
age and define their own
setValues method; everything
else is inherited.

Worth the Effort
I hope that this “under-the-

hood” discussion of PC-Project
has helped illustrate the
concepts of object-oriented pro-
gramming and how Windows
works. Sometimes it seems like
a lot of work to program for
Windows, but the end result, a
program with a graphical user
interface, consistent commands,
and device independence makes
it worthwhile.

Although it is difficult to
make use of polymorphism and
inheritance in procedural lan-
guages, I encourage you to use
object-oriented design tech-
niques no matter what language
you are using. By designing
objects that encompass both
data and their operations and by
clearly separating public pro-
tocol and private implementa-
tion, you will be able to write
more understandable and main-
tainable code.

*/
Def initDialog(self, wParam, IParam)
(

initDialog(self:ActivDialog, wParam, IParam);
setltemText (self, INPUT, getlnputNaraes(activity));
setltemText (self, OUTPUT, getOutputNames(activity));

/* Update the activity after Ok was pressed
Inform the network if the name changes,
check the connections and set the values.

*/
Def update(self)
{

setName(activity, getltemText (self, NAME));
addNode(getNetwork(activity), activity);
checkconnection(activity,

getltemText (self, INPUT),
getltemText (self, OUTPUT));

setvalues(self);

/* Set the values of the activity. checkDate displays
an error message if the date is illegal.

*/
Def setValues(self | ues, ulf)
{

ues := checkDate(getltemText (self, UES));
ulf checkDate(getltemText (self, ULF));
setValues(activity, getltemText (self, NAME),

getltemText (self, DESC), ues, ulf);

will load the name of the activity
being edited into the edit control
named NAME.

I wrote several access
methods, such as getName,
getEarlyStart, and setValues
that provide a safe way to access
an activity’s private data. There-
fore, if I change the representa-
tion of a Milestone, I don’t need
to change code in other classes.
This helps maintain a logical
division in the program. The
dialog box is responsible only
for editing and does not need to
be concerned with whether
changes to the data require a
recalculation of the critical path;
that is the responsibility of the
setValues method of the
activity.

The command method
defined for the ActivDialog is
used to trap user events related
to the dialog. In this case, there
are only two events that we’re
interested in—clicking on OK
or clicking on Cancel—any
other event is ignored. If the user

arguments the resource ID (a
constant) and a parent window.
The layout of the dialog and its
fields, known as edit controls,
are defined in the resource script
file. Before a dialog actually
runs, Actor sends an initDialog
message. We can trap this mess-
age to load the edit controls with
initial values. Since edit controls
are objects, they manage the
details of handling keyboard
input, tabbing, and so on.

By making use of inheritance
I have the ActivDialog class
initialize the edit controls that
it knows abou t and the
MStoneDialog class initialize
the additional edit controls that
it adds. To initialize an edit
control with a value, you send a
setltemText message to the
dialog and specify as arguments
a constant indicating the edit
control and the value to be used.
For example, the message

setltemText (self, NAME,
getName(activity));

MARCH 1989

45MDI: An Emerging
Standard for Manipulating
Document Windows
Kevin P. Welch□he Mu l t i p l e Documen t

Interface (referred to herein as MDI) is a user
interface style developed for Microsoft®
Windows and OS/2 Presentation Manager
(referred to herein as PM) that supports the

viewing of multiple child windows within a main applica-
tion. Each of these smaller child windows can be used to
display different sets of data or multiple views of the same set
of data.

This article describes MDI, focusing on the user interface
(see Figure1) as well as programming aspects of the standard.
In the process, it describes a Windows library (MDI.LIB),
which will let you easily incorporate the MDI interface into
your own applications. The use of this library will then be
demonstrated within the context of a simple application
(COLORS.EXE). Finally, the MDI standard will be
contrasted and compared to the IBM® Systems Application
Architecture (SAA) Common User Access (CUA)
guidelines for user interfaces.

Background & Motivation
Windows and PM developers have long been fascinated

with applications that contain windows within windows.
This interest stems from both the natural capabilities of the
host environments and the influence of other windowing
systems. MDI can therefore be considered an outgrowth of
programmers’ interest and experience as they have attempted
to create a shared-menu environment inside Windows. This
work, after considerable refinement in the Windows environ-
ment, is now being applied to OS/2 PM.

To a degree, the development of MDI satisfied some
creative instincts expressed by developers while also
providing multi-window functionality for IBM-compatible
personal computers. In addition, its specification is facili-
tating the development of an entirely new class of interoper-
able applications that create similar user interfaces on the
Macintosh, Windows, and OS/2 PM.

From this beginning, the MDI specification was refined
and extended (primarily by Microsoft) in a determined effort
to make it reasonably CUA conformant. The result of this

Kevin P. Welch is a computer scientist specializing in applied
mathematics, robotics and artificial intelligence. President of Eikon

Systems, Inc., and a doctoral candidate in applied mathematics, he has
written numerous articles on a variety of technical subjects.

Char t Macro | Window |Ed i t Help

" in in T oral Portfolio I
b ,—CHARTTR1.XLC

CHARTTR2.XLCI
STOCKTR.XLS

MSFT
21.36%

41.50%
STOCKTR.1 8.64%

□ MSFT ■ Ford
AT&T
DEC

Arrange all windows

Figure 1 Microsoft Excel utilizes the Multiple
Document Interface.

File System
Arrange Window ExitOptions =Help

Directory Tr. 510\BINPkPATCH\»*
Close all directories

1770 kilobytes tree✓ 1. Directory tree
2. C:\MSC510\BINP
3. CAMSC510\B..APATCH

DOC
EXE[TONYR] C:\MSC510\BINP

------- BATCH
------- DESCRIBE
— QDOS331

1------- BIN
------- FATFONT
------- GLOBE
—□ME

1------- OLD
— QMSC510

C:\MSC510\BINP**

1 6 file(s) (1 033 kilobytes) of 1 6. 1 770 kilobyte
----------------- B C23.ERR

□ C3.EXE
B CL.ERR

PATCH
BINDC.CMD
C1.ERR
C1.EXE
C1LEXE
C2.EXE

PATCH
□ CL.HLP
□ CVP.EXE1------- PATCH

------- BOUND

Figure 2 The OS/2 Presentation Manager File
System, based on the MDI protocol.

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 3: Standard MDI Menu Template ■

Window

New

Tile
Tile Always

Hide...
UnHide...

1. Windowl
2. Window2
3. Window3

clearly understood that MDI is a
user interface style; that is, it is
not a set of absolute rules but a
collection of a few underdefined
guidelines. Although many soft-
ware developers have imple-
mented MDI within the general
style guidelines, few have
implemented it in exactly the
same way.

The first thing to understand
about MDI is its main, or top-
level, desktop window. This
window is almost always resiz-
able, with a title bar equipped
with a standard system menu
and minimize/maximize icons.
In most circumstances, the title
bar, or caption, of the main
window contains only the name
of the application (more on this
later). As with most windows,
the standard system menu is
provided with the following
options and accelerators:

child window selected, allowing
the user to manage the main
window and all its children. The
first part of the pull-down menu
has commands that allow the
user to manage the size, posi-
tion, and visibility of each of the
child windows. The next part
has a list of all the currently
visible (including iconic) child
windows. In most cases, the
Window pull-down menu looks
something like Figure 3.

The New command lets the
user create a new view into the
currently selected document.
That is, the user creates a new
child window that contains the
currently active document.
Although this might not always
be appropriate, it is useful in
situations in which the user
wishes to view a different por-
tion of the same document. It
could be used, for example, to
support multiple enlargements
of a drawing in a paint program:
one window could contain the
entire image and another a
detailed view.

Since screen “real estate” is
quite limited, most MDI imple-
mentations incorporate some
mechanism to arrange the
various child windows. Here,
following the New command,
are two commands that help
manage the visual arrangement
of the child windows.

The Tile command “tiles”
each of the active child windows
inside the parent client area.
Although many effective tiling
algorithms can be devised, most
assign some sort of priority to
the currently active child
window and place it in the
largest space available. Note
that in most implementations
the Tile command is a one-time
event—any subsequent move-
ment of the child windows will
destroy the tiling.

The Tile Always command is
an extension of the Tile com-
mand as it forces all of the child
windows to remain continu-

effort was the formal definition
of MDI in the Microsoft Win-
dows Software Development
Kit (SDK) followed by its
implementation in Microsoft
Excel—the first major applica-
tion to use the new specification.

Following the lead of Micro-
soft Excel, many software
developers have tried using
multiple child windows in their
applications, but unfortunately
only a few have succeeded in
fully implementing the original
specification. This failure is due
in part to the fact that MDI is
reasonably difficult to imple-
ment correctly since it requires a
good low-level understanding
of the underlying environment.
Furthermore, implementing
MDI in Windows involves a
number of subtle tricks, which in
the best circumstances might be
considered poor programming
practice.

Despite its difficulties, in
recent months the acceptance of
MDI has been further solidified
with its incorporation into the
new (although in my opinion not
very well designed) OS/2 file
system (see Figure 2). This
coupled with the also new but
more consistent PM program-
ming model should further
enhance its appeal to both devel-
opers and publishers alike.

Definition & Specification
From the start, it must be

THE FIRST THING
TO UNDERSTAND
ABOUT MDI IS ITS
MAIN DESKTOP
WINDOW. THIS

WINDOW IS
ALMOST ALWAYS
RESIZABLE, WITH

A TITLE BAR
EQUIPPED WITH A

STANDARD
SYSTEM MENU
AND MINIMIZE/

MAXIMIZE ICONS.
THE MAIN

WINDOW IS ALSO
USED TO DISPLAY

EACH OF THE
APPLICATION

MENUS
BELONGING TO

ITS ASSOCIATED
CHILD WINDOWS.

Restore Alt-F5
Move Alt-F7
Size Alt-F8
Minimize Alt-F9
Maximize Alt-FlO
Close Alt-F4

The main window is also used
to display each of the appli-
cation menus belonging to its
associated child windows. The
application menus vary accord-
ing to the type of document the
active child window contains.
For example, when the user
moves from a child window that
contains a chart document to one
that contains a spreadsheet doc-
ument, the main application
menu changes to reflect the
capabilities of the active child
window. Some menu items can
remain active regardless of
which child window is selected
(for example, various file or
formatting commands that have
equivalent meaning in different
contexts).

In addition, the main menu
provides a Window manage-
ment pull-down menu. Com-
mands on the pull-down menu
are applicable regardless of the

MARCH 1989

47rationale behind this). The com-
mands on the child system menu
are identical to those on the main
window, except that the Alt key
is replaced by the Ctrl key. The
end result is a system menu that
contains the following options
and accelerators:

ously tiled. When the size of one
child window is adjusted, the
relative sizes of the other chil-
dren are changed to compensate.
Any change to the parent win-
dow or to one of the children
automatically causes a tiling to
occur around it (much as it did
with Windows Version 1.03).
Although this technique has not
been used in any major Win-
dows or PM applications, it has
many merits that warrant seri-
ous consideration.

Frequently users end up with
many documents open simulta-
neously, resulting in a cluttered
desktop. Following the tiling
commands are therefore two
commands that enable the user
to hide or show one or more
child windows. The Hide com-
mand lets the user hide the cur-
rently active child window (see
Figure 4). One popular variation
on this theme is to let the user
simultaneously hide one or
more child windows using a
dialog box that contains a mul-
tiple selection list box. This
makes it possible for the user to
clear a portion of the desktop in
one fluid motion.

When windows are hidden,
they remain active but cannot be
accessed. By using the Unhide
command, the user can select
one or more windows (from a
list of all hidden windows) and
make them visible again (see
Figure 5). The windows can be
restored to their original size and
location or, if tiling is active,
merged into the desktop.

The last group of items on the
Window pull-down menu is a
list of all currently active child
windows. The windows are
listed by title, with each title pre-
ceded by a digit that serves as a
short mnemonic. This facilitates
quick and consistent keyboard
access to each child window
regardless of the current title. If
a currently active child window
exists, it is indicated by a check
mark beside its title.

In some applications, certain
commands may only be appli-
cable to the main window. When
this is the case, the main window
may be listed at the beginning of
the window list. This allows the
user to access the commands
that are supported by the main
window quite easily. Applica-
tions that do not need this feature
can omit the main window from
the window list.

Child Windows
The next thing to understand

about MDI—after its main
desktop window—is its associ-
ated child windows. Like the
desktop, each child window is
resizable and contains a title bar.
The title bar normally has the
name of the document being
edited. If a single document is
being viewed by more than one
child window, a number is
appended after the document
name; for example,

CHART.XLCrl
CHART.XLC:2
CHART.XLC:3

Only one child window can be
active at a time, and it is dis-
tinguished from the others by a
change in the color or pattern of
the title bar (usually with the
same mechanisms used to dif-
ferentiate the main desktop from
other top-level windows). Note
that the main desktop window
remains active when one of the
child windows is enabled. To a
certain extent, this appears to be
a visual contradiction since the
input focus seems to be simulta-
neously shared between two
windows, to say nothing of the
programmatic hoops you have
to jump through to accomplish
this sleight of hand.

The active MDI child window
also contains a control or system
menu box. Although similar to
the one maintained by the parent
window, it is activated by the
Alt-Minus key combination
(I’m not completely sure of the

Restore Ctrl-F5
Move Ctrl-F7
Size Ctrl-F8
Minimize Ctrl-F9
Maximize Ctrl-FlO
Close Ctrl-F4

It is left up to the application to
disable or gray any of these com-
mands that are inappropriate. In
most implementations, only the
Minimize command is disabled.

The Move and Size com-
mands (accessed by Ctrl-F7 and
Ctrl-F8, respectively) allow the
location and size of the child
window to be controlled. These
functions mirror the ones avail-
able on the desktop but are
restricted to keep the child win-
dow inside the parent. Like most
operations, the movement and
resizing of the child windows
can also be accomplished using
the mouse.

An interesting item to note is
how the child window frame is
handled when moved. Although
the mouse is clipped to the client
area of the desktop, in Windows
the frame can extend outside the
parent window boundary. In PM
implementations of MDI, the
frame is clipped by the system to
the client area of the desktop.

The Minimize command
(Ctrl-F9), seldom implemented
in Windows, reduces the child
window to an icon inside the
MDI desktop. The resulting icon
can then be selected, moved
around the desktop to a new
location, and restored to its orig-
inal size and location. As is the
case with all visible child win-
dows in the MDI desktop, the
icon can be hidden or selected
using the Window pull-down
menu. Note that throughout this

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

48 Help

Shi -olio

""niiiiiml

&EC 1 CHARTTR1.XLC
2 CHARTTR2.XLC

J 3 STOCKTR.XLS
AT&T

Tert

IBM |

41.50%
E3 _____SrOCKTR.XLS

■MOBBI ■» Ml
UnTWBwniMraSI

R iEH

18 64%B __
1290
4575
2055
2355

840

C __
104.125
40.500
54.000
22.750

B2..506

D ____
$12O58 0(
3221,50? 5C
3110,770 0t

353,576.2"
J . Ford
£AT«rT
5 DEC

Hide active window

Iffl

Unhide

rOCKTR.XLS

For Help on dialog seftngs, press F l

Figure 5The standard MDI Hide command,Figure 4
part of the standard "Window” menu.

The Unhide dialog box.

ctx.ur-f& 5tee Dfawiburiorr* in- T oral Panf'olk

&EC

AT&T

BM

2S(®

Restore window to normal size

SDK) if you’re curious.
The Max imize

command (Ctrl-FlO)
causes the child window
to be enlarged to fill the
entire client area of the
desktop window (see
Figure 6). As a shortcut,
you can use the mouse and
click inside the maximize
icon or double-click
anywhere in the title bar.

Since the client area of
the child window fills the
main window, you can
consider that the title bar

If you think things are compli-
cated enough, consider what
happens when a new MDI child
is created or an existing one is
selected while another is maxi-
mized. The MDI specification
dictates that when a different
child window is selected or a
new one created, it automat-
ically assumes the characteris-
tics of the previously selected
window. This implies that if you
create a new child window while
in a maximized state, the new
window will also be displayed in
a maximized state. Similarly,
when you close a maximized
child window, the MDI desktop
automatically selects the next
available child window and
maximizes it for you—whether
you wanted it to or not.

The Restore command (Ctrl-
F5), as you might expect, causes
the maximized child window (or
minimized if implemented) to
be restored to its original size
and location among the other
windows, much as it does with
top-level system menus.

Finally, the Close command
(Ctrl-F4) destroys the currently
selected child window. In situa-
tions in which the child window
is one of several views into a
common document, the title
bars of the remaining windows
are automatically renumbered to

Figure 6 of the child “slides under” the
menu bar of the desktop
window. When this happens,
two other changes occur. The
first regards the main window
caption. Originally, it contains
only the application name. But
when a child window is
maximized, the title bar of the
desktop is changed to include
the name of the currently active
document, much as is done in
normal, non-MDI applications.
The second, and perhaps even
more complicated change,
involves' the movement of the
child window’s system menu to
the beginning of the application
menu. This allows continued
access to the child system menu,
letting you close or restore the
window to its original size.

Maximized child window. Note
that the child window name has been added to
the Microsoft Excel title bar.

process the icon must remain
inside the client area of the
desktop window and cannot be
moved elsewhere on the display.
Although this is relatively easy
to accomplish in OS/2 PM, it
adds a whole new level of com-
plexity to a Windows implemen-
tation of MDI (and so is seldom
implemented). In PM, how-
ever, it is considerably easier
to implement this feature, and I
expect that more applications
will take advantage of it when
implementing MDI. Refer to the
WITHIN sample application in
the MS® OS/2 Software Devel-
opment Kit Version 1.1 (OS/2

MARCH 1989

Figure 7: MDI Keyboard Accelerators
reflect the change. If the child
window being closed is the last
one accessing a document, a dia-
log box is normally displayed to
confirm any required save oper-
ations. As is the case with all
system menus, double-clicking
the mouse inside the system
menu box is a shortcut for
choosing the Close command.

Another item to note about all
these commands is that they
apply only to the child window
that is currently active. This
means only that the window has
a system menu and minimize/
maximize menu boxes. Unfor-
tunately, the original MDI spe-
cification does not make this
terribly clear. The end result is
that each of the child windows is
responsible for changing its vis-
ible attributes when it receives
and loses the input focus.

If that isn’t enough, the MDI
specification also calls for a
number of keyboard acceler-
ators to move between the vari-
ous child windows (see Figure
7). Despite the fact that the key-
board accelerators are not listed
on the child system menu, they
represent the only mechanism
for moving between child
windows without a mouse. It is
left up to users to remember
(assuming they read their man-
uals) what they are and how they
work. Furthermore, the task of
implementing these acceler-
ators is yet another activity that
must be managed by the already
overburdened MDI desktop
window.

Design Issues
Before I get into the actual

programming issues involved
with implementing MDI, it
seems appropriate to discuss the
design issues that are bound to
come up when working with the
specification. Perhaps foremost
is the additional complexity
associated with using MDI. If
you don’t have the idea by now,
it takes a great deal of time to

49select next active document subdivision, clockwise
select next active document subdivision, counterclockwise
select next active document, from front to back
select next active document, from back to front

F6
Shift-F6
Ctrl-F6
Shift-Ctrl-F6

HelP

Unhide

implement MDI and get it to
work correctly. From a design
standpoint, MDI requires that
each child window be object-
oriented in nature (maintaining
its own instance data) yet be able
to access shared data that is held
in common when multiple
views are in effect. In addition,
the standard has some serious
performance implications since
it introduces more support code
and yet another level of hier-
archy into the system.

It is also natural to compare
multiple instances of tightly
coupled applications to the MDI
alternative. On the positive side,
a group of independent applica-
tions are often easier to design,
implement, and test, especially
when the environment takes
care of the data-handling issues
for you. This approach works
especially well when using non-
Windows-aware applications or
those whose hold on the envi-
ronment is tenuous in the best
of circumstances.

On the negative side are the
resulting cluttered display, lack
of interoperable consistency
with the Macintosh, and diffi-
culties of well-integrated inter-
process communication between
separate applications. Further-
more, since many applications
require the use of multiple views
into the same document, MDI is
something you will probably
have to think seriously about.

Another troublesome design
area with MDI is the way that it
treats menus. Although menus
are relatively simple to structure
when each child window is
homogeneous in nature and
shares the same or similar capa-
bilities, the design can be dif-
ficult when child windows are

Figures
windows hidden. Note that most menu items have
disappeared and that Unhide Window is now part of
the system menu.

Ford
AT&T
DEC

Restore windowto normal size

Figure 9 When a child window is not in the
visible part of the client area, the keyboard can still
interact with that child window. However, some
strange effects may occur, such as the child
window's system menu appearing to float free from
the actual application.

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 10: MDI Application Programming Interface
goals but in so doing perhaps
used property lists and window
offsets to excess.

The MDI API we came up
with in a sense represents an
analog of the existing Windows
API. From previous experience,
we knew that to a large degree
the operating characteristics of a
window are defined by the
default window message pro-
cessing function. The MDI API
attempts to change this foun-
dation and give each window a
new and different set of charac-
teristics. The net result is a small
number of routines with familiar
parameter lists that can be used
together to give your application
MDI characteristics. They are
shown in Figure 10.

Message Flow and
Process Sequencing

In the next two sections we
will examine the inner workings
of the MDI API. We first
describe the general message
flow and processing sequence
used by the API. Then we
describe each of the top-level
functions and explain some of
the subtle ways in which they
work. As you read these sec-
tions, refer to the MDI source
code listings accompanying this
article. The code is reasonably
well documented, so you should
be able to understand it if you
have a good background in
Windows programming.

Now, perhaps the most effi-
cient way to learn about the MDI
API is to study the MDI message
flow diagram carefully (see
Figure 11). It tracks the path of
each message received by an
application that uses the API,
focusing on those that are of
particular interest.

The first thing to notice is the
rather normal message retrieval,
translation, and dispatch loop at
the top of the diagram. This
occurs much as it would in any
other Windows application, the
only difference being in a spe-

50 MdiMainCreateWindowQ
MdiMainDefWindowProcO
MdiChildCreateWindowO
MdiChildDefWindowProcO
MdiGetMessageQ
MdiTranslateAccelerators()
MdiGetMenuO
MdiSetAccelQ

Main window creation function
Main MDI window default window function
MDI child window creation function
MDI child window default window function
MDI application message retrieval function
MDI application translate accelerator function
MDI menu retrieval function
MDI set document window accelerator table function

MDI API
By now you may be wonder-

ing whether MDI is something
you want to take on—especially
since it doesn’t really do any-
thing except manage a collec-
tion of related child windows.
But there is a good reason to use
it—the definition and imple-
mentation of an Application
Program Interface (API) that
manages the MDI. The end re-
sult of the API is a small library
of object modules (approxi-
mately 16Kb in total size) that
performs all the work of inte-
grating MDI into your applica-
tion for you. And best of all, it’s
no extra charge with the price of
your MSJ subscription.

In order to accomplish the
task of integrating the API into
an application I enlisted the help
of friend, long-time associate,
and Windows guru—Geoffrey
Nicholls. Together we came up
with an API that lets you write
complex MDI applications as if
they were standalone, indepen-
dent applications.

We recognized from the start
that developing such an API
would be quite dirty (doing
things we would never do in
conventional Windows pro-
gramming) and that we would
really have to try to keep it small
and simple. We also realized
that we would not be able to
implement the entire specifica-
tion, only some of the more
important facets—the rest we
would leave to you. Finally, we
wanted to make it as object-
oriented as possible. After sev-
eral false starts and rewrites we
ended up accomplishing our

very heterogeneous or involve
compound documents.

Menu design is further com-
plicated when the desktop is
empty or all the child windows
are hidden. Most of the normal
menu options will be disabled
and of no interest to the user.
Many applications (for example
Microsoft Excel, as shown in
Figure 8) respond to this situ-
ation by severely pruning their
menus, adding additional menu-
handling complexity.

One of the most serious draw-
backs of the MDI standard is the
problem that results when the
desktop window is resized.
Although you can’t move a child
window completely outside the
client area, it is possible to have
it end up there if you change the
size of the MDI parent. The end
result is a window (perhaps even
an active one) that is completely
invisible. Despite the fact that
you can’t point to the invisible
window with a mouse, you can
use the child window acceler-
ators to get to it—but you still
can’t see it.

An interesting visual phe-
nomenon can be created if you
use the Ctrl-Minus key combi-
nation while the active child
window is outside the client
area. As you would expect, the
child’s system menu appears but
the child window remains
hidden. The result is that the
child’s system menu appears
unconnected to the desktop,
magically making itself visible
with no apparent connection to
anything else (see Figure 9).
Interesting, maybe, but certainly
somewhat confusing for users.

MARCH 1989

Figure 11: MDI MESSAGE FLOW

Menu Related
Retrieve
Message

Highlight
Selected
Message

Translate
& Dispatch

For ChildFor Parent

Child
Window

Procedure

Application
Window

Procedure

Messages Sent
to Desktop

Messages Sent
to Child

MDI Main
Window

Procedure

MDI Child
Window

Procedure

CLOSE Adjust
Menu

Activate
New Child

ACTIVATE(de)Activate
Child

Unhide
Dialog Fn

COMMAND HIDEUnhide COMMAND Hide
Child

Send
Matching

ACCELS ISYSCOMMAND

SYSTEMActivate
Child

Child
Title

<Ctrl>F4
Text Put on

System Menu

Else INITMENUSend to
Child

INIT Select Child
System Menu

Enable
Hide & Unhide

MENUCHARSend to
Child MENU

Record
Which
Popup

ElseINIT-MENU POPUP Send to
Parent

Record
System
Popup

Specify Child
System Popup

Menu

MENUCHAR MENUSELECT

Resize
Maximized

Child

SIZE MOUSEACTIVATE Activate
Child

SYSCOMMAND KEY Send to
ParentMENU

RESTORE
MAX

NEXT *
PREV

ELSE

Do These
Our Way

Default
Main Window

Procedure

Default
Child Window

Procedure

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

cific check for menu-related
messages (performed inside the
MdiGe tMessage func t ion) .
When such messages are
encountered, they are immedi-
ately dispatched to a window
function in order to activate the
various system and application
menus correctly.

After the message-handling
loop, each message is dis-
patched to an appropriate win-
dow function. As far as MDI is
concerned, there are only two
types of windows present—a
desktop or parent window and
child or document windows. On
the left side of the diagram, the
flow of events for the desktop
window is listed; on the right
side, a similar flow for each of
the document windows is listed.

Tracing down the left, or
desktop side, each message is
processed by the main applica-
tion window function, then
passed on to the default MDI
main window function. The
remainder of events listed below
occur inside this default func-
tion, finally ending in most
messages being sent on to the
standard DefWindowProc.

As you can see from the dia-
gram, the default MDI main
window function is primarily
interested in activation, initial-
ization, and command-related
messages. All other messages
are sent on without modification
to the DefWindowProc. Of
those intercepted, some result in
a particular action being per-
formed (like the activation of a
particular child window); others
are processed and sent directly
to an appropriate child win-
dow — bypassing the default
window function.

On the right, or document side
of the diagram is the sequence of
events that occur when mes-
sages are received by the default
MDI child window function. As
is the case with the left side, the
flow of events listed occur inside
this default function, ending
with most of the messages being
sea t on to the s t anda rd
DefWindowProc.

Like the default desktop win-
dow function, the child window
function is primarily interested
in activation, initialization, and
command-related messages. Of
particular importance are the
various system commands.
Some are handled directly and
not passed to the system. In cer-
tain cases, such as those that in-
volve activation of a menu or a
new document window, the mes-
sage is sent directly to the desktop.

In key places in the diagram
you can see highlighted rectan-
gles, which represent the acti-
vation of a child or document
window. Figure 12 separates this
activation step into a number of
smaller components.

In a normal Windows appli-
cation, the activation of a child
window occurs with little fan-
fare, but in an MDI implementa-
tion a number of important steps
must be performed. The first is
changing the title bar color. Al-
though Windows allows only
one window to have the input
focus, when a child window is
selected it seems that both the
desktop and the child are
simultaneously active. This is
done by manually sending a
WM_NCPAINT message
(with appropriate parameters)
to the DefWindowProc of the
window being activated.

Figure 14:
SWITCH

ZOOMED CHILD
PROCESSING
SEQUENCE

Figure 13:
ZOOM

MDI CHILD
PROCESSING
SEQUENCE

Figure 12:
ACTIVATE
MDI CHILD

PROCESSING
SEQUENCE

Switch
Zoom

Zoom
Child

Put Child
Sys Menu

on Menubar

Activate
Child

Change
Title Bar

Save
Current
Position

Change
Title Color

Move Title
to Desktop

Change Style
for SYSBOX
& MAXIMIZE

Save
Current
Position

Adjust
Window

Size

Draw
Window
Frame

Mark
Style
Bit

Adjust
Window

Size

Deactivate
Previous

Child

Put Child
SYS Menu on

Child Menu

Mark
Style
Bit

Move
Window
Menu

Show
Window

Place check
on Window

Menu
Clear Style

Bit (old)

Adjust
Window

Size (old)
Set Focus

Remove Child
Sys Menu from

Child Menu

Figure 15: Files for Creating the MDI API Library

MDI Library make file
MDLH Library header file
MDI1.C Main MDI API functions
MDI2.C Activation and switching of document windows
MDI3.C Handling of menus and keyboard user interface

MARCH 1989

Hide
Unhide,

1. Redl
2. Greenl
3. Bluel
4. Red2
5. Green2
6. Blue?
7. Red3
8. Green3

79. Blue3

|Red3|

|Green3|

Blue3
[100

25

50

00

Figure 16A▲ The Colors program can create red,
green, or blue child windows in varying densities of
color. Each new child window is positioned by the
application in a cascading fashion.

Figure 16B Colors has the standard Window
Menu which lists each child window.

Redl

Green l
25

B lue l
25

Red2

Gr een2

Blue?

Best aze

g::
Maximize

Ctrl+F8
Ctrl+FIG

Close Ctrl+F4

Figure 16D When a child window in Colors is
off the client area, it is still accesible by way of the
keyboard, complete with floating means, as was
seen in figure 9.

Figure 16C The child window process for blue
allows the user to change color densities from the
keyboard by selecting, respectively, the numbers
shown in the menu above (2, 5, 7, or 1). The child
windows can, of course, be resized or hidden.

own menu. When it is activated,
the current desktop menu is
replaced and the new one in-
serted, retaining all the attributes
that it previously had. Finally,
just before the input focus is
transferred to the document, the
Window pull-down menu has to
be updated to reflect the current
status of the desktop.

Like Figure 12, Figures 13 and
14 list the sequence of events that
transpires either when a docu-
ment window is maximized or a
different document window is

Furthermore, under the inter-
face specification, only the cur-
rently active document window
contains an MDI system menu
and maximize/minimize icons.
Because of this, the second step
is to change the style of the
window to include these new
attributes and then force the
system to display the changes.

The next major task to per-
form when a document window
is activated involves replacing
the desktop menu. Each child
window is associated with its

selected while in maximized
state. Of these two sequences,
the only somewhat technical
task is the automatic insertion of
the MDI system menu at the
beginning of the application
menu. This involves retrieving
the MDI menu icon from Win-
dows with the following call:

hBitmap = LoadBitmap(
NULL,
MAKEINTRESOURCE(
OBM_CLOSE));

The resulting bitmap contains
both the standard system menu

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 17: Source Code for COLORS.EXE
icon and the MDI one. After
retrieving the bitmap dimen-
sions (via a GetObject call), you
can extract the MDI system
menu bitmap for use when
updating the application menu.
This entire sequence of events
(never before publicly docu-
mented) is performed by the
MdiCreateChi ldSysBi tmap
function, should you have the
inclination to see how it is
actually accomplished.

Top-Level Functions
Now that I’ve discussed the

message flow and process
sequencing of MDI, I will focus
on the top-level function calls
provided by the API. Program-
matically speaking, if you
understand these functions, you
will be able to use the MDI inter-
face in your own applications
without a great deal of difficulty.

The first of these calls is
MdiMainCrea t eWindow,
which is responsible for the cre-
ation of the main desktop win-
dow and all the associated MDI
property lists required to make
the interface work. The actual
data structures used by the API
are maintained with property
lists attached to the desktop and
document windows. A property
list is an attempt to give each
window access to some sort of
instance data (to borrow an
object-oriented programming
term). This is accomplished by
associating a window handle
with a named block of memory.
Using the interface provided by
Windows, any window can set,
enumerate, retrieve, and destroy
properties. Although there is no
predefined limit to the number
of properties that a window can
have, the property list itself, like
other window-related data, is
actually allocated in the local
heap of the user library. The
MdiMainCreateWindow func-
tion also attaches the Window
pull-down menu to the main
application menu, making the

ICOLORS- MAKE File
♦ compilation flags
CFLAGS=-AM -C -Gsw -Osal -W2 -Zp

COLORS
colors.res; colors.rc colors.ico colors.h mdi.h

rc -r colors.rc

colors.Obj: colors.c colors.h mdi.h
cl $(CFLAGS) colors.c

colors.exe: colors.obj colors.def mdi.lib
link4 colors, colors/ALIGN:16, colors,mdi+mlibw+mlibcew/NOE, colors
rc colors.res

colors.exe: colors.res
rc colors.res

COLORS.DEF - DEF File
NAME COLORS
DESCRIPTION 'Multiple Document Interface'
STUB 'WINSTUB.EXE'

CODE MOVEABLE DISCARDABLE PURE LOADONCALL SHARED
DATA MOVEABLE MULTIPLE

HEAPSIZE 2048
STACKSIZE 2048

EXPORTS
MainWndProc $1
ColorWndProc @2
MainDlgNew @3
MainDlgAbout @4
MdiMsgHook @5
MdiDlgUnhide 06

1 COLORS.RC - Resource File

54

/* COLORS.RC - Resources for COLORS program */

/* COLORS section of file */

♦include <windows.h>
♦include "colors.h"
♦include "mdi.h"

Mainlcon ICON colors.ico

MainMenu MENU
BEGIN

POPUP "4File"
BEGIN

MENUITEM "4New. IDM_NEW
MENUITEM "40pen.. IDM_0PEN, GRAYED
MENUITEM "4Save", IDM_SAVE, GRAYED
MENUITEM "Save 4As...’’# IDM_SAVEAS, GRAYED
MENUITEM "4Close", IDM CLOSE, GRAYED
MENUITEM
MENUITEM

SEPARATOR
"4Exit", IDM_EXIT

MENUITEM "A4bout...", IDM_ABOUT
END

END

RedMenu MENU
BEGIN

POPUP "4File"
BEGIN

MENUITEM "4New..
MENUITEM ”40pen...",

IDM_NEW
IDM~0PEN, GRAYED

MENUITEM "4Save", IDM_SAVE, GRAYED
MENUITEM "Save 4As...",
MENUITEM "4Close",
MENUITEM SEPARATOR
MENUITEM "4Exit",
MENUITEM "A4bout ...",

IDM_SAVEAS
IDM_CLOSE

IDM_EXIT
IDM_ABOUT

!, GRAYED

END
POPUP "4Red”
BEGIN

MENUITEM "40 IDM_O
MENUITEM ”425 %", IDM_25
MENUITEM "450 %", IDM_50
MENUITEM "475 %", IDM_75
MENUITEM "4100 %", IDM_100, CHECKED

MARCH 1989

Figure 17
END

END

GreenMenu MENU
BEGIN

POPUP "SFile"
BEGIN

MENUITEM "SNew...", IDM_NEW
MENUITEM "SOpen.. IDM_OPEN, GRAYED h
MENUITEM "SSave", IDM_SAVE, GRAYED =
MENUITEM "Save SAs...”, IDM__SAVEAS, GRAYED
MENUITEM "SClose", IDMjCLOSE ;’
MENUITEM SEPARATOR
MENUITEM "SExit", IDM_EXIT ’\
MENUITEM "ASbout ...", TXMJ&OXH:

END
POPUP "SGreen"
BEGIN

MENUITEM "SO %", IDM_0 f
MENUITEM "425 %", IDM_25 ‘
MENUITEM "S50 %", IDM_50
MENUITEM "S75 IDM_75 •
MENUITEM "S100 %", IDMjlOO, CHECKED

MDI interface almost trans-
parent to the desktop.

The second API call is
MdiMainDefWindowProc. As
described in the MDI message
flow diagram, this function is
responsible for the default pro-
cessing of all desktop-related
messages. More specifically, it
is interested in messages that
involve the activation and deac-
tivation of the desktop, menu-
related messages, and messages
relating to the visibility and
sizing of the associated docu-
ment windows. Implemented as
a large switch statement, it
passes most of the messages on
to the DefWindowProc.

The next API call is the
MdiChildCreateWindow func-
tion. This function, identical in
many ways to the standard
Windows CreateWindow call,
creates a new child window
inside the desktop. Behind the
scenes it sets up the related
property lists, keeps track of the
window menu and accelerator
table, and activates the child
window correctly, depending on
the current state of the desktop.

As with the desktop window,
each document window is
associated with a default MDI
message-processing function,
MdiChi ldDefWindowProc.
This function is responsible for
the default handling of all docu-
ment window related messages,
especially those that involve
system menu choices and
window creation, activation,
and destruction. Those mes-
sages not handled are either sent
directly to the desktop window
or are pa s sed on to the
DefWindowProc.

After the default child win-
dow function is a replacement
for the standard Windows mes-
sage function, MdiGetMessage.
This function is responsible for
retrieving all of the application
messages from the system
queue. It also checks for key-
board menu access and activates

END
END

BlueMenu MENU
BEGIN

POPUP "SFile"
BEGIN

MENUITEM "SNew...", IDM_NEW
MENUITEM "SOpen ...", IDMjOPEN, GRAYED ;
MENUITEM "SSave", IDMJSAVE, GRAYED
MENUITEM "Save SAs...", IDMjSAVEAS, GRAYED
MENUITEM "SClose", IDM~CLOSE
MENUITEM SEPARATOR
MENUITEM "SExit", IDM_EXIT :
MENUITEM "ASbout ...", IDMjABOUT £

END
POPUP "SBlue"
BEGIN

MENUITEM "SO %\t 0", IDM_0
MENUITEM "425 %\t 2", IDM_25
MENUITEM "450 %\t 5", IDMj50
MENUITEM "S75 %\t 7", IDMJ75
MENUITEM "S100 %\t 1", IDMjlOO, CHECKED

END
END

BlueAccel
BEGIN

ACCELERATORS

IDM_0
IDM_25
IDM_50
IDM_75
IDM_100

END

STRINGTABLE
BEGIN

IDSJTITLE,
IDS~MAINCLASS,
IDS_COLORCLASS,

END ~

'Multiple Document Interface'
'MdiMainClass"
’MdiChildClass"

MainNew DIALOG 50
STYLE WSJDLGFRAME | WS_POPUP
BEGIN

GROUPBOX "New"
RADIOBUTTON "SRed",
RADIOBUTTON "SGreen",
RADIOBUTTON "SBlue",
DEFPUSHBUTTON "SOK"
PUSHBUTTON "SCancel"

END

50 60

100,
88,
88,
88,
32,
32,

52
10
10
10
14
14

16,
28

40,

DLGNEW_RED,
DLGNEW_GREEN,
DLGNEW_BLUE,

IDOK,
IDCANCEL,

108,
108, 28,

MainAbout DIALOG 22, 17, 156,
STYLE WSJDLGFRAME | WS_POPUP
BEGIN ~

CTEXT

CTEXT
CTEXT
CTEXT
CTEXT
CTEXT "Version 1.00
DEFPUSHBUTTON "Ok"

"Multiple Document Interface'
"By Geoffrey D. Nicholls",
"and Kevin P. Welch",
"(C) Copyright 1988”,
"Eikon Systems, Inc.",

1-Nov-88",

0, 8

8
8
8
8
8

IDOK, 60, 80, 32, 14, WS_GROUP

8,152,
20.152,
28.152,
40.152,
48.152,
60.152,

100

END

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

I Figure 17
the correct menu when cursor
keys are used while a pull-down
menu is visible.

Fo l lowing th is is the
MdiTrans l a t eAcce le ra to r s
function, which is responsible
for translating each message
according to the currently active
accelerator table. Though most
Windows applications have
only one accelerator table, MDI
applications can have several—
one for the main desktop and
one for each type of document
window. This function automat-
ically checks the state of the
application and uses the appro-
priate accelerator table.

Finally, there are two utility
functions contained in the
MDI API—MdiGetMenu and
MdiSetAccel—that are imple-
mented as macros. These two
functions are required since
most applications need to define
an accelerator table and access
the current menu. The current
menu handle is retrieved by the
MdiGetMenu macro which
returns it to the document win-
dow. The MdiSetAccel macro
attaches an accelerator table to
the property list of the document
window. The accelerator table
can then be used automatically
when messages are translated
and dispatched throughout the
application.

Taken together, these eight
functions represent the entire
MDI API. Although you cannot
use these functions with impu-
nity, they should work well even
in the most demanding applica-
tions. If carefully used, they hide
most of the subtleties of MDI
and let you focus on solving
customer problems, not imple-
menting yet another scheme for
managing child windows. The
only really nasty side effect is
the installation of a system key-
board message hook. This hook
intercepts cursor movement
keystrokes while manipulating
menus. Without this message
hook it would be very difficult to

56 /* MDI section of file */

MdiMenu MENU
BEGIN

MENUITEM "&New", IDM NEWWINDOW, GRAYED
MENUITEM SEPARATOR
MENUITEM "&Tile", IDM_ARRANGE, GRAYED
MENUITEM "Tile &Always", IDM_ARRANGEALL, GRAYED
MENUITEM SEPARATOR
MENUITEM "&Hide", IDM_HIDE, GRAYED
MENUITEM "&Unhide...", IDM UNHIDE

END

MdiChildAccel ACCELERATORS
BEGIN

VK_F4, IDM_CLOSE, VIRTKEY, NOINVERT, CONTROL
VK_F5, IDM_RESTORE, VIRTKEY, NOINVERT, CONTROL
VK_F6, IDM_NEXTWINDOW, VIRTKEY, NOINVERT, CONTROL
VK_F6, IDM_PREVWINDOW, VIRTKEY, NOINVERT, CONTROL, SHIFT
VK_F7, IDM_MOVE, VIRTKEY, NOINVERT, CONTROL
VK_F8, IDM_SIZE, VIRTKEY, NOINVERT, CONTROL
VK_F10, IDM_MAXIMIZE, VIRTKEY, NOINVERT, CONTROL

END

MdiUnhide DIALOG 50, 50, 132, 68
STYLE WS_DLGFRAME | WS_POPUP
BEGIN

LTEXT "&Unhide", -1, 4, 4, 88, 10
LISTBOX DLGUNHIDE_LB, 4, 16, 88, 48, WS_TABSTOP
DEFPUSHBUTTON "&OK" IDOK, 96, 8, 32, 14
PUSHBUTTON "fiCancel" IDCANCEL, 96, 28, 32, 14

END

COLORS.H - Header File
/ * COLORS H - Include for COLORS program */

/* Resource file constants */

/* Strings */
♦define IDS TITLE 1
♦define IDS_MAINCLASS 2
♦define IDS_COLORCLASS 3

/* Debugging menu choice */
♦define IDM_DEBUG 0x100

/* File Menu Choices */
♦define IDM_NEW 0x101
♦define IDM_OPEN 0x102
#define IDMJSAVE 0x103
♦define IDM_SAVEAS 0x104
♦define IDMJPRINT 0x105
♦define IDM_AB0UT 0x106
♦define IDM_EXIT 0x107

/* Color Menu Choices */
♦define IDM_0 0x108
♦define IDM_25 0x109
♦define IDM_50 0x10a
♦define IDM_75 0x10b
♦define IDM_100 0x10c

/* New dialog box */
♦define DLGNEW_RED 0x100
♦define DLGNEW_GREEN 0x101
♦define DLGNEW_BLUE 0x102

/* Window <axtra constants *

♦define WE_COLOR 0
♦define WE_SHADE 2
♦define WE~EXTRA 4

♦define COLOR_RED 0
♦define COLOR_GREEN 1
♦define COLOR_BLUE 2

/* Function prototypes */

int PASCAL WinMainf HANDLE, HANDLE, LPSTR, int);

HWND Mainlnit(HANDLE, HANDLE, int);

MARCH 1989

Figure 17
implement a truly authentic
MDI keyboard user interface.

MainWndProc(HWND, unsigned, WORD, LONG);
Colorlnit(HANDLE);
ColorCreate(HWND, int);
ColorWndProc(HWND, unsigned, WORD, LONG);
MainDlgNew(HWND, unsigned, WORD, LONG };
MainDlgAbout(HWND, unsigned, WORD, LONG);

long FAR
BOOL
HWND
long FAR
int FAR PASCAL
int FAR PASCAL

PASCAL

PASCAL
Building MDI.LIB

In order to build the MDI API
library, you will have to create
the files listed in Figure 15 (these
files, not included here due to
space considerations, are avail-
able for downloading from any
MSJ bulletin boardr—Ed.). In
addition to these source files,
you will need the Microsoft
Windows Version 2.1 SDK and
the Microsoft C Optimizing
Compiler Version 5.1.

The library MAKE file (MDI)
will compile each of the mod-
ules in the medium model and
combine them into an object
library using the LIB utility
provided with the C compiler.
The resulting library is then
ready for use without modifica-
tion by any medium model
Windows application. If you
wish, you can change the make
file compilation flags and create
equivalent small, compact, or
large versions of the same
library.

COLORS.C - Source File for COLORS.EXE
/* COLORS.C - Colorful MDI Children */

finclude
finclude
finclude

<string.h>
<stdio.h>
<windows.h>

finclude
finclude

"colors.h"
"mdi.h"

/* Static variables */

/* Text for client area */
static char *szShadings[5] {"0 "25 %", "50 %”,

"75 %”, "100 %"};

documents */
*szTitles[3] =

/* Titles of
static char "Red”, "Green”, "Blue'

each document (for titles} */
wCounts[3] - { 0, 0, 0

/* Count of
static int

/* Color & Shading table */
static DWORD rgbColors[3][5] = {

RGB(255, 255,255), /* 0 % */
RGB(255, 192,192), /* 25 % */
RGB(255, 128, 128), /* 50 % */
RGB(255, 64, 64), /* 75 % */
RGB(255, 0,0) /* 100 % */
h
{ /* GREEN */
RGB(255, 255, 255), /* 0 % */
RGB(192, 255,192), /* 25 % */
RGB(128, 255,128), /* 50 % */
RGB(64, 255,64), /* 75 % */
RGB(0,255,0) /* 100 % */
},
{ /* BLUE */
RGB(255, 255, 255), /* 0 % */
RGB(192, 192, 255), /* 25 % */
RGB(128, 128, 255), /* 50 % */
RGB(64, 64,255), /* 75 % */
RGB(0,0, 255) /* 100 % */
} };

xe called by windows. Calls the initialization

Using the MDI API
I will use the program

COLORS.EXE to show how the
MDI API is used in the context
of a simple application. I chose
this program since it will clearly
demonstrate the simple and
straightforward use of the MDI
API. In many ways, COLORS
can be considered a collection of
three different, yet related pro-
grams. For one, although the
three parts of COLORS share
the same window procedure,
they act as if they were three
separate applications. Using the
MDI API they are brought
together into one desktop.

With the COLORS desktop,
you can create a number of red,
green, and blue colored docu-
ment windows. The colored
windows are created by using
the New... option under the File
pull-down menu. Each window

* * First
* and contains the

routine
loop. */message

int PASCAL
HANDLE
HANDLE
LPSTR
int

WinMain(
hinst,
hPrevInst,
IpszCmdLine,
nCmdShow)

/* Handle to
/* Current message */

our MDI desktop */hwndColors;
msg;

HWND
MSG

/* Initialize things needed
hwndColors = Mainlnit(hPrevInst, hinst, nCmdShow);
if ('hwndColors)

for this application */

/* Failure to initialize */
return NULL;

/* Process messages */
while (MdiGetMessage(hwndColors, &msg, NULL, NULL, NULL))

Normal message processing */
(!MdiTranslateAccelerators(hwndColors, &msg))

TranslateMessage(&msg);
DispatchMessage(&msg);

Done */

1tT«h lHlilll| l»l

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

JH I?IlldFigure 17
is successively numbered and,
via an associated pull-down
menu, can be modified to dis-
play different intensities of
color. Of the three types of docu-
ment windows, the blue one is
unique in that it is also associ-
ated with an accelerator table.
By using keys 0, 1, 2, 5, and 7
you can change the intensity of
the blue background color to 0
percent, 100 percent, 25 percent,
50 percent, and 75 percent re-
spectively. See Figure 16 for an
example.

When several documents are
present on the desktop, you can
move from window to window
using one of three mechan-
isms—selecting a window with
the mouse, moving to another
window using the keyboard user
interface, or pulling down the
Window menu and manually
selecting a different window.
Additionally, using the Window
pull-down menu, you can hide
the currently active document
window or possibly redisplay
hidden ones in a traditional MDI
fashion.

You can build COLORS from
the source code listed in Figure
17, which includes the following
files:

COLORS
COLORS.DEF
COLORS.RC
COLORS.H
COLORS.C

Each reference to the MDI
API is clearly identified and
highlighted in Figure 17. The
first reference to notice is in the
application MAKE File. Here,
COLORS is dependent on both
MDI.H and MDI.LIB. In addi-
tion, the MDI library is refer-
enced in the linkage command
line, which allows COLORS to
use any of the public MDI API
routines we previously defined.

The next MDI reference of
i n t e r e s t is con t a ined in
COLORS.DEF, which is where
both the MdiMsgHook and

return msg.wParam;

/* * First, initialize the MDI desktop and the color document windows,
the MDI desktop and then create one red document . */

Second, create

HWND Mainlnit(
HANDLE
HANDLE
int

hPrevInst,
hlnst,
nCmdShow)

char szTitle(80J ; /*
char szClass[80]; /*
HWND hwndColors; /*
WNDCLASS WndClass;

/* Window classes */
if (’hPrevInst)

/*

Title of our MDI desktop */
Class name of our MDI desktop */
Handle to our MDI desktop */
Class structure */

/* Main window */
Loadstring(hlnst, IDS_MAINCLASS, szClass, sizeoff szClass))

/* Prepare registration */
memset(&WndClass, 0, :
WndClass.style
WndClass.IpfnWndProc
WndClass.hlnstance
WndClass.hlcon
WndClass.hCursor
WndClass.hbrBackground
WndClass.IpszMenuName
WndClass.IpszClassName

sizeof(WndClass));
= CS_HREDRAW | CS_VREDRAW;
= MainWndProc;
= hlnst;
= Loadicon(hlnst, "Mainlcon");
« Loadcursor(NULL, IDC_ARROW);

I = COLOR_APPWORKSPACE + 1;
= "MainMenu";

s = szClass;

Register main class */
(!Registerclass(&WndClass))
return NULL;

if

Allow each of the MDI children to do its own initialize */
(!ColorInit(hlnst))
return NULL;

if

}

/* Create our main overlapped window */
Loadstring(hlnst, IDS_TITLE, szTitle, sizeof(szTitle));
hwndColors = MdiMainCreateWindow(szClass,

szTitle,
WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN,
CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
NULL,
NULL,
hlnst,
NULL);

Did we create successfully? */
(!hwndColors)
return NULL;

if

Give us one red child to begin with */
(!ColorCreate(hwndColors, COLOR_RED))if

DestroyWindow(hwndColors)
return NULL;

/* Ready */
ShowWindow(hwndColors, nCmdShow);
UpdateWindow(hwndColors);

/* Done */
return hwndColors;

/* Handle messages for our MDI desktop,
are received when NO document

This includes any WM_COMMAND
is visible on the desktop.*/

messages that

long FAR PASCAL MainWndProc(
HWND
unsigned
WORD
LONG

hwndColors,
message,
wParam,
IParam)

/* Procedure instance for dialogs */
/* Current instance handle */

IpProc;
hlnst;

FARPROC
HANDLE

switch (message)

case WM_COMMAND:

— iliJJUL'lUJiJ

MARCH 1989

Figure 17
MdiDlgUnhide functions are
exported. They both must be
exported since they represent
movable entry points used by
the system. Failure to do so will
cause serious problems.

The third reference to the
MDI API is in COLORS.RC.
Note the inclusion of the MDI.H
header file and the definition of
a number of MDI-related re-
sources at the end of the file. The
first of these resources, the MDI
window menu, is used as a tem-
plate for the Window pull-down
menu. The MDI API creates a
duplicate of this menu, attaching
a list of the currently visible
document windows at the end.

The next resource is the MDI
child window accelerator table.
This table, which is automat-
ically loaded by the API, is used
to implement the document win-
dow keyboard user interface.
Last in the resource file is the
template for the MDI Unhide
dialog box. This dialog box is
displayed when the Unhide...
command is selected from the
Window pull-down menu. With
this dialog box you can select a
hidden document window and
have it redisplayed on the desk-
top. You can also change the
style and characteristics of the
dialog box to suite your applica-
tion, although you should be
careful not to alter the name and
identifiers used.

Following the resource file is
COLORS.C, which contains all
of the C source code for the
COLORS application and is
structured much like any other
windows program. COLORS.C
(like COLORS.RC) also refer-
ences MDI.H. In addition to
defining all MDI related identi-
fiers, MDI.H needs to be in-
cluded since it defines function
prototypes for each member of
the MDI API.

The first MDI-related task
COLORS performs is the crea-
tion of the main desktop window
using the MdiMainCreateWindow

59hlnst = GetWindowWord(hwndColors, GWW_HINSTANCE);
switch(wParam)
{
case IDM_NEW:

/* New dialog box */
IpProc = MakeProcInstance(MainDlgNew, hlnst);
switch(DialogBox(hlnst, "MainNew”, hwndColors, IpProc))
I
case DLGNEW_RED:

ColorCreate(hwndColors, COLORJRED);
break;

case DLGNEW_GREEN:
ColorCreate(hwndColors, COLOR_GREEN);
break;

case DLGNEW BLUE:
ColorCreate(hwndColors, COLOR_BLUE);
break;

}
FreeProcInstance(IpProc);
break;

case IDM_OPEN:
break;

case IDM_ABOUT:
/* About dialog box */
IpProc = MakeProcInstance(MainDlgAbout, hlnst);
DialogBox(hlnst, "MainAbout ", hwndColors, IpProc);
FreeProcInstance(IpProc);
break;

case IDM-EXIT:
/* Tell application to shut down */
PostMessage(hwndColors, WM_SYSCOMMAND, SC_CLOSE, OL);
break;

}
break;

case WMJDESTROY:
PostQuitMessage(0);
break;

}
return MdiMainDefWindowProc(hwndColors, message, wParam, IParam);

/* Register the document class. */

BOOL Colorlnit(
HANDLE hlnst)

{
char szClass[80]; /* Class name */
WNDCLASS WndClass; /* Class structure */

/* Get class name */
Loadstring(hlnst, IDS COLORCLASS, szClass, sizeof(szClass));

/* Prepare registration */
memset (&WndClass, 0, sizeof(WndClass) >;
WndClass.style = CS_HREDRAW | CSJVREDRAW;
WndClass.IpfnWndProc = ColorWndProc;
WndClass.cbWndExtra = WE_EXTRA;
WndClass.hlnstance = hlnst;
WndClass.hCursor * LoadCursor(NULL, IDC_ARROW);
WndClass.hbrBackground = GetStockObject(GRAY_BRUSH);
WndClass.IpszClassName - szClass;

/* Register */
return RegisterClass(&WndClass);

/* Create a document window of a given color on the MDI desktop. It loads the
appropriate menu, and accelerator table if the color is BLUE. It initializes
color and shading in the window extra words.*/

HWND ColorCreate(
HWND hwndParent,
int wType)

char szClass[80]; /* Class name for documents */
char szTitle[80]; /* Title for this document */
HANDLE hAccel = NULL; /* Accelerator for blue doc only */
HANDLE hlnst; /* Current instance handle */
HMENU hmenuChild; /* Handle to document’s menu */
HWND hwndChild; /* Handle to document */

Mil l] .'L JIJHI-IiM

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 17
function inside Mainlnit. This
call creates an empty window
that contains the default desk-
top menu. Not long after
MdiMainCreateWindow is a
call to ColorCreate, a utility
function that creates a new doc-
ument window using the
MdiChildCreateWindow func-
tion and associates it with an
appropriate accelerator table. In
this case, the default action is to
create a single red document
window.

Once the desktop has been
created and initialized, the appli-
cation retrieves and processes
all related messages. Like most
Windows applications, this is
accomplished with a simple
GetMessage loop followed by
the translation and dispatch of
each message retrieved. In this
case, however, MdiGetMessage
and MdiTranslateAccelerators
are used in place of the normal
Windows functions.

The next reference to the MDI
API occurs in the MainWndProc
of COLORS. Each message that
is dispatched by the message-
processing loop is sent directly
to the r e spons ib l e window
function. The MainWndProc
handles all the messages that
relate to the desktop window. In
addition, since the desktop win-
dow is the only one that contains
a menu, it also receives all
menu-related messages.

The desktop message pro-
cessing function traps only the
file-related commands and
passes the rest of the messages to
the MdiMainDefWindowProc
for additional handling. The
MdiMainDefWindowProc in
turn processes the commands in
which it is interested (redirect-
ing some to the appropriate doc-
ument window function) and
passes the rest on to the system
via the DefWindowProc.

Throughout this process, the
main window message process-
ing function can receive menu
commands belonging to any one

60 /* Get important info */
hlnst = GetWindowWord(hwndParent, GWW_H1NSTANCE);
Loadstring(hlnst, IDS_COLORCLASS, szClass, sizeof(szClass));
sprintf(szTitle, "%s%d", szTitles[wType], t+wCounts[wType]);

switch(wType)

{
case COLOR_RED:

hmenuChild « LoadMenu(hlnst, "RedMenu");
break;

case COLOR_GREEN:
hmenuChild = LoadMenu(hlnst, "GreenMenu");
break;

case COLOR_JBLUE:
hmenuChild = LoadMenu(hlnst, "BlueMenu");
hAccel « LoadAccelerators(hlnst, "BlueAccel");
break;

}

/* Create */
hwndChild = MdiChildCreateWindow(szClass,

szTitle,
WS_MDICHILD,
CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
hwndParent,
hmenuChild,
hlnst,
OL);

/* Success? */
if (hwndChild)
{

SetWindowWord(hwndChild, WE_SHADE, IDM_100);
SetWindowWord(hwndChild, WE_COLOR, wType);
MdiSetAccel(hwndChild, hAccel);

return hwndChild;

/* Handle messages for our documents. WM_COMMAND messages arrive at this
procedure just as if the menu were attached to this window.*/

long FAR PASCAL ColorWndProc(
HWND hwndChild,
unsigned message,
WORD wParam,
LONG IParam)

{
char szText[20J; /* Client area text */
HBRUSH hBrush; /* Brush for filling document */
PAINTSTRUCT Paint; /* Paint structure */
int wColor; /* Color of current document */
int wShade; /* Shading of current document */

switch (message)
{
case WM_COMMAND:

switch(wParam)
{
/* File menu */
case IDM_SAVE:
case IDM_SAVEAS:
case IDM—PRINT:

break;

case IDM_CLOSE:
PostMessage(hwndChild, WM_SYSCOMMAND, SC_CLOSE, IParam);
break;

case IDM—0:
case IDM_25:
case IDM_50:
case IDM__75:
case IDM_100:

CheckMenuItem(MdiGetMenu(hwndChild),
SetWindowWord(hwndChild, WE_SHADE, wParam),
MF_UNCHECKED);

CheckMenuItem(MdiGetMenu(hwndChild),
GetWindOwWord(hwndChild, WE_SHADE),
MF_CHECKED);

InvalidateRect(hwndChild, (LPRECT) NULL, TRUE);
break;

}
break;

MARCH 1989

DeleteObject(
IDM

DLGNEW_GREEN:
DLGNEW_BLUE:

hDlg,

r, WM_COMMAND,

hDlg,

WM_COMMAND:
idDialogf hDlg,

of the child windows. Because
of this capability, it is recom-
mended that each document
window menu share a common
set of commands that are appli-
cable at the desktop level. In
COLORS, these commands are
all those listed under the File
pull-down menu.

Note that it is only necessary
to conceptually separate the
desktop and document menus,
not each of the associated docu-
ment menus. This is because
menu commands not inter-
cepted by the desktop are only
destined for the currently active
document window, not for those
that are inactive.

The last references to the MDI
API occur in the ColorWndProc
message-processing function.
This function, shared among
each of the colored child win-
dows, responds to the document
menu commands and paints the
window background using the
default color at the selected
intensity level. Throughout
ColorWndProc, MdiGetMenu
is used in place of GetMenu.
This is because the desktop win-
dow contains the menu for the
document window and isn't
always the immediate parent
[else GetMenu(GetParent(hWnd))
would be a suitable alternative].

Like the desktop window
function, ColorWndProc passes
most of the messages on to the
default MDI message-process-
ing function, in this case
MdiCh i ldDefWindowProc .
This function in turn processes a
subset of the messages and
passes the balance on to the
DefWindowProc. In certain sit-
uations, messages are redirected
to the desktop window and not
sent directly to the system.

When you build COLORS,
experiment with it and see how
the internal functions respond in
a variety of situations. Try and
hide all the document windows
or create new ones while one is
in a maximized state. In partic-

61

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

development community is
IBM’s SAA. Although a com-
prehensive overview of SAA is
outside the scope of this article,
we will briefly describe it to
show how the SAA specifica-
tion influences MDI.

SAA is a set of selected soft-
ware interfaces, conventions,
and protocols that serve as a
common framework for appli-
cation development, portability,
and use across three major com-
puting platforms— the IBM
System/370, System/3X, and
the personal computer.

A significant part of SAA is
the CUA specification. This
standard defines, in a lengthy set
of rules and guidelines, what
SAA-compliant user interfaces
should look like and how they
are to be used. The end result is
a 300+ page document (avail-
able from your local IBM repre-
sentative or branch office) that
describes in laborious detail the
SAA human/machine interface.

Why are SAA and CUA
important? Regardless of what
you think about them, the com-
pelling fact of the matter is that
many large corporations are
attempting to settle on a com-
mon user interface that spans a
variety of hardware platforms.
This drive is in part motivated by
the hope that users will be able to
migrate easily from machine to
machine without the customary
learning curve associated with
the transition. Corporations are
starting to require vendors to
provide SAA, CUA-compliant
software. Microsoft has been
actively trying to capitalize on
this by making Windows SAA,
CUA-compliant (hence all the
unusual keyboard accelerators).

MDI, being an integral part of
the Microsoft Windows strat-
egy, fits into this overall stan-
dard. The net effect—and this is
why MDI is important for you as
a software developer—is that if
you use the MDI interface (as
opposed to some other scheme)

ular try out the keyboard user
interface, moving from docu-
ment to document without the
aid of a mouse.

In a while you will begin to
appreciate how much is going
on in the background to make
the interface work consistently.
Yet despite the visual sophis-
tication, there is the increased
overhead required by the API. If
you switch rapidly between dif-
ferent document windows, then
the additional overhead will be
readily apparent. Although in
part due to the relatively simple-
minded message -hand l ing
approach of COLORS (which
passes everything on to the
default window function), to a
large degree it can be attributed
to the MDI API itself.

Nevertheless, keep in mind
that the MDI API implemented
here was designed for clarity
and readability, not for size and
performance. Our internal
working version of the API (on
which the published library was
based) implemented the full
MDI specification considerably
more efficiently than this one
does (including Window New,
Tiling, and the ability to mini-
mize document windows). The
central structure, however,
remains the same—with a little
tuning and enhancement, the
base API presented here is
capable of supporting world-
class MDI applications with
unparalleled ease. Coupled with
a little rethinking of your current
data-handling techniques, you
will be able to adapt many of
your existing Windows applica-
tions to the MDI user interface
easily. And, perhaps best of all,
with the MDI API you can
accomplish this with few
changes to your source code.

MDI and SAA
In addition to the interoper-

ability benefits of MDI, one of
the most significant forces
behind its acceptance in the

in your application, your poten-
tial users will already be familiar
with the interface and you could
potentially sell more software.
At the very least, you should
take a close look at the IBM
SAA, CUA specification and
give it careful consideration. Per-
sonally, I have a hard time living
with the constraints CUA puts
on me as a developer, but I am
willing to live with them if I can
put my programs in front of a
larger customer base.

I hope this discussion has
given you ideas and insights that
will help you in your own devel-
opment. MDI just might be the
answer to some technical prob-
lem you are struggling with. As
you consider MDI, realize that
to a large extent it has evolved
from the need for an organized
way of handling multiple doc-
uments within a single desktop.
This evolution has been at best
troublesome and is still some-
what at odds with the underlying
environment. Perhaps in the
future something like the MDI
API might be included in the
Windows or OS/2 Presentation
Manager API, saving both you
and me a great deal of effort.
Until that time, you have access
to a little more information than
you did before.

62

MARCH 1989

63Planning and Writing a
Multithreaded OS/2 Program
with Microsoft C

Richard Hale Shaw

rom a programmer’s perspective,
OS/2 systems are a lot like a new programming
language. In order to become fluent you have to
begin learning the idiom by writing programs with
it. In this article, we’ll cover the highlights of setting

up and installing the Microsoft C Version 5.1 compiler for OS/2
development and briefly look at the header files included with it.
Then we’ll take a closer look at the OS/2
Application Programming Interface
(API) with the object of writing our first
OS/2 program. Last, we’ll begin to
explore the world of multithreaded pro-
gramming and produce a multithreaded
version of the C programmer’s much
beloved HELLO.C program.

Compiler Setup
The first concern for installing

Microsoft C 5.1 is to ensure that you have
enough disk space. The minimum space
needed for the protected mode version of
the compiler is approximately 3.5Mb
(which includes two libraries). If you
install the full protected mode compiler,
you’ll need closer to 4.5Mb. If you’re
using the compiler to produce applica-
tions for both DOS and OS/2, you’ll prob-
ably need over 6Mb. The Setup program
can be instructed to install the portions of
the compiler that you want.

You must also decide which directory
structure the compiler will use. We dis-
cussed the preferred OS/2 directory structure, shown in Figure 1, in
the first article of this series. You may recall that the \OS2\PBIN
directory contains only protected mode executables; \OS2\RBIN
holds only real mode programs; and\OS2\BIN contains bound exe-
cutables, that is, programs that can operate under DOS and OS/2.

If you install the compiler while you are running OS/2, you’ll find
that the Setup program recommends that you incorporate the
traditional C compiler directories into the same structure, as shown
in Figure 2. The \OS2\LIB directory will contain all compiler

Hel lo , wo
from Thread

He l lo , wo
from Thread

He l lo , wo
from Thread

He l lo , wo
on Thread

He l lo , wo
from Thread

He l lo , wo
from Thread

He l lo , wo
from Thread

He l lo , wo
from Thread

He l lo , wo
on Thread

He l lo , wo
on Thread

He l lo , wo
on Thread

He l lo , wo
on Thread

He l lo , wo
on Thread

He l lo , wo
on Thread

He l lo , wo
on Thread

He l lo , wo
on Thread

He l lo , wo
on Thread

The Hello OS/2 multithread kernel program.

Richard Hale Shaw is a contributor to various computer magazines and
a software engineer at Hilgraeve, Inc.

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

\ (Root)|-----------

\SPOOL \Other
DirectoriesAOS2

\PBIN \RBIN\BIN

tions will restrict you from using
OS/2 multitasking services
(after all, DOS does not offer
these services), it does ensure
that a program will run without
recompi la t ion under both
environments.

BINDC will leave a bound
version of the compiler in the
directory of your choice when it
finishes. Since it’s a bound exe-
cutable, it is recommended that
you have BINDC place its
output in the \OS2\BIN direc-
tory (where dual-mode pro-
grams are kept) and delete the
original copies of the compiler.
You won’t need them, and
they’ll just take up disk space.
The dual-mode version will be
bigger than the original, but
you’ll find it simpler to use only
the one version.

The setup program produces
two files: NEW-VARS.CMD
and NEW-CONF.SYS. The
NEW-VARS.CMD file con-
tains the environment variable
settings that should be in place
when you run the compiler,
based on the directory selections
you made during installation.
You can include these either in
STARTUP.CMD or in the CMD
file used for setting up your C
development session through
the OS/2 Program Starter [see
“Using the OS/2 Environment
to Develop DOS and OS/2
Applications,” MSJ (Vol. 4, No.
1)]. NEW-CONF.SYS contains
the additions that ought to be
added to CONFIG.SYS
(CONFIG.OS2 in older, dual-
boot environments).

New Compiler Options
There are three compiler

command-line options that are
pertinent to OS/2 programming.
The /Lr option designates the
compilation of a conventional
real mode executable (the
default in earlier versions of the
compiler). The /Lp option,
however, signals the compiler to
compile and link for the pro-

64

\ (Root)
\SPOOL

i -------1----- XO,S2------1--------r
\BIN \PBIN \RBIN MNCLUDE \LIB \SOURCE

MSC510

etc.

\MT \SYS

\SYS

Figure 2 The OS/2 directory structure after compiler installation
represents one possible subdirectory configuration. The make files for the
article are based on this structure. Another option would be to incorporate the
include, lib, and source subdirectories listed under the OS/2 subdirectory into
the standard MSC510 subdirectories.

ever, combine the basic library
for each memory model with
the graphics library (if selected)
and appropriate floating-point
library. Combining the libraries
allows you to keep only one
library per memory model. The
Installation/Setup program will
do this automatically for you
and will delete the leftover com-
ponent libraries for you if you
elect to do so.

Another important option is
the ability to create a dual-mode
or bound compiler. This is a ver-
sion of the compiler that will run
under both OS/2 and DOS. The
Setup program will leave a copy
ofBINDC.CMD (BINDC.BAT
if you installed the compiler
while running DOS), which can
be run to produce the bound ver-
sion. WeTl discuss the produc-
tion of bound applications later,
but for now keep in mind that a
bound application is one that
calls only the subset of API ser-
vices known as Family Appli-
cation Programming Interface
(FAPI) functions. These are func-
tions that are available under
both DOS and OS/2. Although
limiting yourself to these func-

libraries, \OS2MNCLUDE will
contain the header files, and
\OS2\SOURCE will be used for
ancillary documentation and
source files. Note that the com-
piler will also install an alter-
native set of header files under
the \0S2MNCLUDE\MT direc-
tory. These are headers for the
multithreaded version of the
library, which weTl discuss later
in this article.

Microsoft C 5.1 includes
facilities for producing tradi-
tional DOS programs, OS/2 pro-
grams, and programs designed
to execute under both environ-
ments (bound applications). To
this end, one of the more sig-
nificant features available when
you install the compiler under
OS/2 are combined libraries.

Previous versions of the C
compiler already include a
plethora of libraries, including
three floating-point libraries and
a graphics library. When you
add to these libraries the need to
keep versions of them for each
memory model used, plus librar-
ies for OS/2 development, you
will find yourself running out of
disk space fast. You can, how-

MARCH 1989

Figure 3: A Generic Make File for Bound OS/2 C Programs

65
tected mode. When you use this
switch, the protected mode ver-
sion of a given library will be
used. For instance, if a conven-
tional, real mode, small mem-
ory model compilation used
SLIBCE.LIB (the small model
combined library with floating-
point emulation), adding the /Lp
option instructs the linker to use
SLIBCEP.LIB (the protected
mode version of the library).

The third option, /Fb, directs
the linker to run BIND.EXE
after linking is complete. BIND
is a utility that converts pro-
tected mode programs into dual-
mode applications, which can be
run in either real or protected
mode. With these options in
mind, and using the directory
structure discussed earlier, we
can construct a generic MAKE
file for which we use MAKE to
build our first OS/2 programs
(shown in Figure 3).

This MAKE file, which is
called HELLO (since it will be
used to compile HELLO.C),
forms the basis for the MAKE
files we’ll use to build other
programs. It sets up the envi-
ronment variables INCLUDE
and LIB for the compiler and
passes a number of options to
CL. Note that the MAKE file
uses both /Lp and /Fb to instruct
the compiler to produce a pro-
tected mode bound version of
the program.

The /W3 option forces the
compiler to use warning level 3,
the most severe warning level
available from the compiler.
This option is very useful to
ensure strict type checking of
different objects and arguments
against OS/2-type definitions.
The /Zpe option combines two
options: /Zp and /Ze. The former
instructs the compiler to pro-
duce packed, or byte-aligned (as
opposed to word-aligned),
structures. The latter allows
extensions to C, particularly the
far, near, and pascal keywords,
which OS/2 programs will

#file: hello
#generic OS/2 MAKE file for producing 'bound' executables
#
#Currently set for making HELLO.C
#Usage: Omake hello

INCLUDE=\os2\include
LIB=\os2\lib
COPT=/Lp /Fb /W3 /Zpe /G2 /Ox /I$(INCLUDE)
#COPT=/Lp /Fb /W3 /Zpie /G2 /Od /!$(INCLUDE)

hello.exe: hello.c hello
cl $(COPT) hello.c /link /noe

#end

OS/2 System Calls
OS/2 system services are

available to application pro-
grams through the OS/2 API.
Unlike the interrupt-based inter-
face of DOS, the API makes all
services available through sys-
tem calls (also known as call-
gates). While the DOS interface
was limited to 256 functions (via
Int 21h), there is no limit on the
number of services that could be
added to OS/2 in the future. And
whereas DOS services required
the use of registers to receive or
return values, OS/2 system ser-
vices pass these on the stack.
Thus, all OS/2 services use the
same format: if a system service
is capable of returning error
values, it will return a zero when
successful and an unsigned non-
zero integer on error. In addi-
tion, as stated earlier, the subset
of API functions known as Fam-
ily API (FAPI) functions will
operate under both OS/2 and
DOS, allowing you to write
bound executable programs that
operate in both environments.

When you include a call to an
API function in your OS/2 pro-
gram, the linker does not add the
code for the function to the exe-
cutable program as it would for a
DOS program. Instead, it will
add instructions for loading the
function’s code from the appro-
priate OS/2 dynamic-link
library (DLL). When the pro-
gram executes, OS/2 will load
the necessary DLLs (if it hasn’t
already loaded them for some
other application program).

reference frequently. The /Ox
option turns on maximum opti-
mization, and the /I option spe-
cifies the INCLUDE directory,
which the compiler will use.

The /G2 option forces the
production of code for the
80286, which is a handy option,
since 286 instructions are gener-
ally more efficient than pure
8086 instructions. Although this
option restricts the program to
run on either an 80286 or above,
it’s not a problem in the OS/2
environment, since OS/2 will
only run on a machine with an
80286 or 80386 (the 80386 also
executes 80286 code). How-
ever, it could cause problems if
the bound executable is run
under DOS on an 8088/8086.

Several additional points
should be made about this
MAKE file. First, note that for
debugging purposes we will
want to include symbolic
debugging information with the
/Zi option and turn off opti-
mization with /Od. Thus, I’ve
included the additional line of
options for debugging. You can
enable these options and disable
the others by removing the # in
front of one line and inserting a
in front of the other line of
options (# is the comment
marker in MAKE files). Also,
note the use of the /NOE option
that CL passes to the linker,
which prevents the linker’s
extended library search. This
option will ensure that the cor-
rect versions of the library func-
tions are linked to the program.

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 4: OS/2 Header Files for Program Development B

OS2.H - Always included in your program
OS2DEF.H - Common definitions
BSE.H - Base definitions, includes the following:

BSEDOS.H - Kernel services definitions
BSESUB.H - Kbd, Vio, Mou definitions
BSEERR.H - Error macros

and address (far pointer). If the
service requires only the value
of the parameter, then a copy of
it is passed (call by value). If the
service requires a pointer to a
parameter, however, the address
is passed to the service (call by
reference). Because the calls are
FAR calls, addresses passed
must also be FAR. To ensure
that you are passing a far address
correctly to a system service,
you should declare the object as
far, use a cast, or compile with
the large data model. Meticu-
lous use of the OS/2 object def-
initions found in the new header
files (described below) will
eliminate most problems.

You might also note that seg-
ment values that are found in far
addresses are really selectors.
Although they have the same
segment:offset form found in far
addresses under MS-DOS real
mode, OS/2’s protected mode
requires a selector value. A
selector is actually an index into
a table of segment addresses and
has no correspondence to a
physical segment. Selectors
must be used since OS/2’s vir-
tual memory management may
change the physical segment
location as it is moved around in
memory or swapped to disk. The
layer of abstraction they provide
allows you to address a far
object without having to know
its real physical location in
memory—or whether it’s in
memory at all (taken care of for
you by OS/2).

API functions use the Pascal
calling convention. This con-
vention specifies that there be a
fixed number of arguments to
the function and that the argu-
ments are pushed on the stack
left to right (the order in which
you specify them in your source
code). In addition, Pascal calls
do not require the function being
called to clean up the stack. All
these requirements result in
smaller, faster function calls.
This scheme is the reverse of the

66

Figure 5: OS/2 Header File Control Macros B

1 Define this macro: To include definitions/declarations for:

INCLJBASE All services
INCL DOS Kernel services
INCL SUB Subsystem (Kbd, Vio, Mou)
INCL DOSERRORS Error macros
INCL DOSPROCESS Processes and threads calls
INCL DOSINFOSEG Information segment calls
INCL DOSFILEMGR File management calls
INCL DOSMEMMGR Memory management calls
INCL DOSSEMAPHORES Semaphore functions
INCL DOSDATETIME Date/Time and Timer calls
INCL DOSMODULEMGR Module management services
INCL DOSNLS National language services
INCL DOSSIGNALS Signal functions
INCL DOSMONITORS Monitor services
INCL DOSSESMGR Session management calls
INCL DOSDEVICES Device and IOPL services
INCLDOSQUEUES Queue functions
INCL RESOURCES Resource-support functions

Thus, the functions will be avail-
able to the program at run time.

Only one instance of an OS/2
API function will be loaded into
memory, even if more than one
application program is using it.
Note that for FAPI functions in a
bound executable program, the
linker will include both the DLL
calling code and the real mode
executable code for the func-
tion. The former will be used
when the program is operating
in the OS/2 protected mode, and
the latter will invoke Int 21h
when in MS-DOS real mode.

Since OS/2 loads API rou-
tines from a DLL, they are
located in a different segment
from that of the calling routine
and must be reached with a FAR
call. There are four general types
of parameters that can be passed
to an API system service: byte
(or char), word (or unsigned),
double word (unsigned long),

MICROSOFT C 5.1
PROVIDES SIX NEW

HEADER FILES, SOME OR
ALL OF WHICH NEED TO BE
INCLUDED IN PROGRAMS

THAT TAKE ADVANTAGE OF
THE OS/2 API. THESE

HEADER FILES PROVIDE
THE API DECLARATIONS,
FUNCTION PROTOTYPES,

MACROS, CONSTANTS,
AND TYPE DEFINITIONS

NEEDED BY AN
OS/2 C PROGRAM.

MARCH 1989

inclusion of all API declarations
and definitions by defining
INCL_BASE in your program
prior to the #include for OS2.H:
#define INCL_BASE
#include <os2.h>

Note that many commonly
used componen ts will be
defined by default unless you
define INCL_NOCOMMON in
your program. You can also
include specific kernel services
components by defining the
macros listed in Figure 5.

A First OS/2 Program
Once you have successfully

installed the compiler, there is
nothing to keep you from writ-
ing your first OS/2 program.
Figure 6 lists the code for an
OS/2 ve r s ion of Denn i s
Ritchie’s famous HELLO.C.

At first glance, an OS/2 pro-
gram such as this version of
HELLO.C might appear ex-
tremely bizarre. It certainly does
not resemble the Kemighan and
Ritchie version that we’ve all
come to know and love. Never-
theless, it accomplishes many of
the same purposes. It allows us
to begin to explore the OS/2
API; introduces us to a real use
of some of the header files,
defines, and functions; and most
of all, gets us started writing our
first real OS/2 program.

A second glance will reveal
the familiar structure so often
used to write maintainable, effi-
cient C programs. You’ll note
the use of INCL_SUB and
INCL_DOS to include function
prototypes for the single call to
the Vio subsystem and the single
kernel call in the program. The
printf call has been replaced
with a call to VioWrtTTY,
which prints a string on the log-
ical screen used by our program
(all video access in OS/2 is done
through a logical screen group).
Note that this function requires
both the address of the string and
the string length and that it appro-
priately handles the C escape

traditional C calling convention,
which pushes arguments right to
left (allowing a variable number
of arguments); requires the
caller to clean up the stack; and
generally produces slower,
larger code. The OS/2 header
files discussed below specify
API functions as far pascal calls,
so most of the time you will not
have to take any steps beyond
including the appropriate header
files in your program. The far
pascal convention is defined in
the OS/2 header files as
APIENTRY.

Additionally, API functions
use the Microsoft® Windows con-
vention of two- or three-phrase
descriptive names with both
uppercase and lowercase letters.
Keyboard subsystem services
are provided by functions whose
names begin with Kbd; Mouse
and Video subsystem services
names begin with Mou and Vio
respectively. The names of all
remaining operating system
services (OS/2 kernel calls)
begin with Dos. Some brief
examples of these include
DosRead, DosCreateThread,
KbdCharln, and VioWrtTTY.

The documentation for the
OS/2 API functions can be
found in the OS/2 Program-
mer’s Reference. This manual is
a part of the Microsoft OS/2 Pro-
grammer’s Toolkit and the
Microsof t OS/2 Sof tware
Development Kit.

Header Files
Microsoft C 5.1 provides six

new header files, some or all of
which need to be included in
programs that take advantage of
the OS/2 API. These header files
(listed in Figure 4) provide the
API declarations, function pro-
totypes, macros, constants, and
type definitions needed by an
OS/2 C program. As a routine
part of getting started program-
ming under OS/2, you should
become intimately familiar with
their contents. You’ll find that

most of the type definitions and
structures use a naming conven-
tion similar to that used by the
system services descr ibed
earlier. Also, since many system
services will place return values
in the structures defined in these
header files, OS/2 programming
will be easier later if you study
their contents now.

The OS/2 header files are
hierarchically nested, so that
you need only include OS2.H in
your program most of the time.
The remaining header files and
definitions can be included by
using various combinations of
control macros (listed in Figure
5), which should be defined in
your program before including
OS2.H. This is particularly
helpful when you are using only
a small subset of API functions
in your program, since the
headers are large and compila-
tion will proceed more quickly if
you include only what the pro-
gram requires.

OS2.H itself includes two
header files. The first file,
OS2DEF.H, contains most of
the commonly used definitions,
typedefs, macros, constants, and
structures. The second, BSE.H,
indirectly contains the base def-
initions for the various OS/2
subsystems (Keyboard, Video,
Mouse, and Dos), plus error-
handling macros by optionally
inc luding three addi t ional
header f i les: BSEDOS.H,
BSESUB.H, and BSEERR.H.

BSEDOS.H contains defi-
nitions required for using the
OS/2 kernel system service, and
can be included by defining
INCL_DOS before the #include
for OS2.H in your program.
BSESUB.H contains all the def-
initions required for using any of
the OS/2 subsystems (Kbd, Mou
or Vio) and is included by defin-
ing INCL_SUB. BSEERR.H
contains all error-related macros
and is inc luded th rough
INCL_DOSERRORS. If neces-
sary, you can force the blanket

67

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

RHS

1988 K&R'

♦define SUB
DOS

♦include

for the simultaneous execution
of more than one program, but
what’s more they permit OS/2 to
execute different parts of the
same program at the same time.

The OS/2 multitasking
model, shown in Figure?, is built
of threads, processes, and screen
groups. A thread is the smallest
unit of execution, a piece of code
dispatched by the system.
Threads are organized into a
process, or the portion of a pro-
gram that controls the owner-
ship of resources, such as files,
memory, and threads. A process
is composed of at least one
thread and may consist of as
many as 255 separate threads. A
process’s main thread is the one
in which execution begins. Note
that though a process may use a
thread to manage a resource, a
thread by itself does not own any
resources. A thread inherits the
environment (open files, and so
on) of which it is a part and
shares the same code and data
segments as its parent process.
Collectively, the processes that
share the same logical keyboard
and screen are a part of the same
screen group.

The model allows for multi-
tasking at all three levels (screen
group, process, and thread). In
this article, however, we’re pri-
marily concerned with the
simultaneous execution of
threads within the same process.
Programs that execute in such a
manner are called multithreaded
programs.

Multiple Thread Execution
OS/2 lets concurrently exe-

cuting threads share a single
computer’s CPU through the use
of a preemptive, priority-based
task scheduler (later editions of
OS/2 will take advantage of
multiple-CPU architectures). In
reality, only one thread at a time
is executing, but the CPU’s
attention turns so quickly from
one thread to another that the
threads appear to be executing at

68

ThreadO Thread1 ThreadO Thread1 Thread2 Thread3

I --------■--------1 ThreadO I -----------------1--------j--------1-----------------1

ProcessO _____Process1 ________________Process2

Screen Group

Figure 7 The OS/2 multitasking model represents its most significantly
different feature from DOS. Note that ultimately the smallest unit of execution
is a single thread. Each process must consist of at least one thread, although it
can consist of more. All of the processes shown here share the same logical
screen and keyboard and thus are part of the same screen group. If a process
needs a different screen/keyboard combination, it must be started in a different
screen group.

modified, under either OS/2 or
DOS. Note that the MAKE file
for this program can be found in
Figure 3. If you haven’t already
compiled and run a C program
using API calls, I suggest you
type in HELLO.C, compile it,
and run it. It will certainly help
make OS/2’s magic more real
and prepare you for our next
step: the world of multithreaded
programs.

Multiple Threads
The single most significant

difference between OS/2 and
DOS are the former’s facilities
for multitasking. Multitasking
will dramatically increase the
efficiency of most applications
that are designed to take
advantage of it. However, not
only do OS/2’s facilities allow

sequences \r and \n, to generate
a carriage-retum/line-feed com-
bination. Also note that all Vio
calls require a zero for their last
parameter.

After printing the string, a
kernel call to DosExit ter-
minates the entire program. The
f i rs t pa rame te r spec i f i e s
whether the entire process or the
current thread should be termi-
nated (more on this in the next
section). The second parameter
is the exit code, which is passed
to the parent process and is iden-
tical to the one that is passed in
exit, the traditional C termina-
tion function.

Finally, note that this program
can be compiled, linked, and
bound to create a dual-mode
application. Thus, the same exe-
cutable program will run, un-

MARCH 1989

Figure 8: A Simple Keyboard Thread Program
the same time—as long as the
applications that use multiple
threads do not abuse system
resources and CPU time in their
multithreaded code.

The task scheduler controls
which thread gets slices of CPU
time and how much time is doled
out to the thread. A thread’s pri-
ority controls its access to the
CPU (if it has a higher priority, it
will get more CPU time relative
to other threads). Thus, a previ-
ously idle, higher priority thread
that is ready to run can preempt
CPU time from a lower priority
thread that is currently execut-
ing. On the other hand, a lower
priority thread must wait until
all higher priority threads are
idle before the scheduler will
give it CPU time.

The OS/2 task scheduler
employs three categories of pri-
orities for scheduling tasks. The
highest priority is time-critical,
which should be used by tasks
that must respond to some type
of regularly occurring event
(like a communications stream
or keyboard input). The second
category, regular, is the default
priority for a new thread and
should be used by most normal
threads. The last category, idle,
is for threads that should execute
when there are no higher priority
tasks that are ready or able to
execute (such as a print spooler).
Note that there are 32 levels of
priorities in each category and
that the default priority for fore-
ground processes is regular,
level 0, whereas processes that
run in the background are also
regular but have a lower priority
level. In general, foreground
tasks are given a higher priority
than background tasks.

The task scheduler always
runs the highest priority thread
that is capable of executing. If
two or more threads with the
same priority are ready to run,
the scheduler will evenly grant
them CPU time on a round-robin
basis. If a thread is blocked—

69/*
* Simple keyboard thread example
★
* This program illustrates how a process might start
* a keyboard thread which will terminate the process when
* the user presses the Esc key.

* The program starts a keyboard thread which blocks on keyboard
* input and terminates the entire program when the user presses
* the Esc key. All other keys are ignored and thrown away.
*/

#define INCL—DOS
#define INCL-SUB

#include <os2.h>
#include <mt\stdio.h>
#include <mt\process.h>

#define ESC Oxlb
#define TRUE 1
#define THREADSTACK 512

char keythreadstack[THREADSTACK];

void keyboard_thread(void);
void main(void);

void main(void)
{
TID threadid;

if(DosCreateThread(keyboard—thread, &threadid,
Skeythreadstack[THREADSTACK-1]))

exit(-1);

while(TRUE) /* replace this with
; code for main program */

}

void keyboard__thread(void) /* keyboard thread code */
{
KBDKEYINFO keyinfo;

while(TRUE)
{
KbdCharln(Skeyinfo,IO_WAIT,0); /* wait for keystroke */
if(keyinfo.chChar == ESC) /* if ESC pressed, break */

break;
)

DosExit(EXIT_PROCESS,0); /* terminate the process */
}

unsigned DosCreateThread(void (far *) functionptr(void),
TID *threadidptr, void *stack);

Figure 9 DosCreateThread, whose function prototype is shown above,
can create a new thread whose code is found in the function pointed to by
functionptr. The ID of the new thread is placed in threadidptr and the thread will
use the stack whose top begins at the address pointed to by stack.
that is, it is waiting until some
event occurs—OS/2 will sus-
pend it and run another thread.
Note that the TIMESLICE=
statement in CONFIG.SYS
controls the minimum and the
maximum time slice values used
by OS/2.

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 10: Make File for Simple Keyboard Thread Program
manipulating events or serial-
izing access to resources among
multiple threads: that’s where
semaphores and priority levels
come in. We’ll discuss these
later, but for now remember that
when writing a multithreaded
application, never assume!

A Multithread Program
The process of creating an

additional thread is fairly simple
in itself. For instance, suppose
you wanted an application to run
uninterrupted, ignoring all key-
board input until the user presses
the Esc key, at which point the
application would terminate. In
a DOS application, there are two
possible solutions: you could
design the program to occasion-
ally poll the keyboard, which is
cumbersome in a complex appli-
cation, or your program could
trap the BIOS keyboard inter-
rupt with code that would signal
the main program if the Esc key
is pressed.

Under OS/2 these approaches
are neither necessary nor rele-
vant. Instead, you can start a
thread that blocks on keyboard
input (that is, it waits until there
is keyboard activity). When the
user presses a key, the thread
examines the key. If the key is
any key other than Esc, it will
continue to block. If the key is
Esc, the thread will terminate the
entire process.

A brief examination of the
program shown in Figure 8 will
make this procedure clearer.
The main thread begins where
all C programs begin, with the
call to main. The main thread
creates the keyboard thread with
the call to the API kernel func-
tion, DosCreateThread.

Note that DosCreateThread
takes several parameters, as
shown by the function prototype
in Figure 9. The first parameter is
the address of a function that
contains the code for the thread.
Here, the function is innocently
named keyboard_thread. The

70 #
make file for key.c example found in Figure 8
#

INCLUDE=\os2\include\mt
LIB=\os2\lib
COPT=/Lp /W3 /Zp /Zie /Z1 /G2s /I$(INCLUDE) /Alfw

key.exe: key.c key
cl $(COPT) key.c /link /co llibcmt

threads of execution. There are a
number of caveats that help in
planning such a program, which
can be summarized as: never
assume that OS/2 will execute a
multitasking program or routine
in a specific way. Corollaries of
this rule include:

• Never assume that one rou-
tine will execute before
another.

• Never assume that a given
routine will execute for a
given number of millisec-
onds.

• Never assume that future ver-
sions of OS/2 will schedule
tasks the same way the cur-
rent one does.

• Never assume that different
threads will always be com-
peting for CPU time. Future
versions of OS/2 will run on
parallel processors, allowing
different threads to execute
simultaneously. While you
and I both know that they
don’t really execute concur-
rently at this point, treat them
as if they already do.

• Never assume any direct cor-
relations between CPU time
slices and CPU cycles.

• Never assume that OS/2 can
guarantee which thread will
execute first at any point
during the course of your
program. Although the main
thread is always the first
thread to execute in the pro-
gram, there are no guarantees
on execution order once the
second thread has begun.

Obviously, the last caveat
doesn’t mean that there aren’t
any controls available for

As mentioned above, a thread
is blocked when it is waiting for
an event to occur. A thread is
running when it is being given
CPU time slices. If a thread is no
longer blocked but hasn’t yet
been given CPU time slices,
then it is said to be ready to run.

Planning a Multithreaded
Program

As mentioned above, a pro-
gram or process can have more
than one thread of execution.
Using multiple threads lets it
manipulate and control machine
resources more efficiently than
would a single-threaded appli-
cation. For instance, printing,
communications file transfers,
and database sorting all are tasks
that can be performed simulta-
neously by separate threads of
execution while the main thread
of an application program con-
tinues to serve the end user.
Furthermore, in the multi-
tasking environment of OS/2, a
multiple-thread architecture is
essential to help ensure that no
single task will hog machine re-
sources. Gordon Letwin, OS/2
architect, first identified this
libertarian approach to sharing
resources: programs must obey
the rules in order to work to-
gether. This approach makes it
obvious who the violator is
when a program abuses the envi-
ronment, and permits the system
to operate in the most efficient
manner possible.

Thus, planning a multi-
threaded application presup-
poses that the tasks that the pro-
gram will perform can best be
implemented by using multiple

MARCH 1989

Figure 11: USING DOSEXITLIST
second parameter is the address
of a variable into which OS/2
will place the thread’s identifier
once it has successfully created
the thread. The final parameter
is the address of the top of the
stack allocated for the thread,
which should be at least 512
bytes in size. Note that in order
to pass the address of the top of
the stack area, keythreadstack,
we must pass the address of the
last byte of keythreadstack in the
manner shown.

As mentioned earlier, all API
functions return nonzero on fail-
ure, so we know that a new
thread was successfully created
if DosCreateThread returns a
zero value. The newly created
thread will immediately begin
execution of the code found in
keyboard_thread. Although the
call to DosCreateThread could
have been placed almost any-
where, calling it early in the
program ensures that the pro-
gram will terminate immedi-
ately if the user presses the
Escape key. Note that the
while(TRUE) statement can be
replaced with whatever code
you would use for processing in
the main thread.

Now let’s take a look at the
keyboard-thread function. The
code for a thread should always
be contained in a single func-
tion. You cannot incorporate the
code for this function into main
or any other function, nor can
you call a thread function direct-
ly. Thus, thread functions are
really an OS/2 extension to C.

Note that keyboard-thread
begins executing immediately
after creation and then goes into
the loop to call the Kbd sub-
system function, KbdCharln.
This function’s first parameter
is the address of an OS/2
KBDKEYINFO s t ruc tu re ,
which will contain information
about the keys pressed upon
return (this structure will be
discussed in detail in an
upcoming installment of this

71OS/2 lets a process establish a set of routines that will always be called when
the process terminates.Typically these routines are functions that free the
process’s resources (such as closing open files). Regardless of how and when the
process terminates, OS/2 will execute the functions upon termination. An
application can ’’register” functions that OS/2 will execute, thus ensuring an
orderly shutdown and disposal of the process's resources in spite of the
unexpected termination of the process.

The kernel function, DosExitList, registers the termination functions with OS/
2, and terminates the functions themselves. The function prototype for
DosExitList is:
unsigned DosExitList(unsigned code, void far

*fptr(unsigned));

When registering the functions with OS/2, the first parameter can be either
EXLST_ADD or EXLST_REMOVE, which add or remove a function from the
list, respectively. By allowing a process to dynamically add and remove
functions from the termination list, a process can control the destiny of its
resources after its death (in a way, not unlike a human will). A process can
remove the functions from the list prior to normal termination if they are no
longer needed. The second parameter is, obviously, a pointer to the termination
function being registered.

When OS/2 begins execution of the termination functions, the process and all
of its threads have been destroyed, with the exception of the thread executing the
DosExitList functions. OS/2 will transfer control to each function registered, but
in no particular order. Once OS/2 has executed all the registered functions, the
process ends.

The termination functions registered with DosExitList must be defined in the
process (that is, in its code segment) and should be as short and fail-safe as
possible. A termination function may call any OS/2 system function with the
exception of DosCreateThread and DosExecPgm.

A skeleton definition of a termination function follows:
void far termfunc(unsigned code)

{
if(code != TC_EXIT)

{

/* do cleanup here */

)
DosExitList (EXLST_EXIT, 0);

Note that a termination function has one parameter and no return value. The
parameter will always be one of the following:

TC_EXIT - normal exit
TC HARDERROR - hard-error abort
TC TRAP - trap operation
TCKILLPROCESS - unintercepted DosKillProcess

This allows the termination function to detect whether a normal termination of
the process has occurred. It can also determine what actions the function should
take.

Termination functions must terminate themselves by calling
DosExitList(EXLST_EXIT,0). They cannot execute a ’return’ (explicitly or
implicity, by falling past the curly brace), or the process will hang and never
terminate. The EXLST_EXIT code tells OS/2 that the termination processing is
complete, and that it should call the next function on the termination list.

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

72 Using The Multithreaded Library:
DosCreateThread vs. beginthread

I he OS/2 API interface for
■UH creating and terminating threads
works through the kernel functions
DosCreateThread and DosExit .
Unfortunately, although the code for a
thread must be contained within a
function, you cannot pass parameters to it
by using DosCreateThread. So if you
prefer more of a C-like interface to write
multithreaded programs, or you’re going
to use the multithreaded standard library,
LLIBCMT.LIB, you should be familiar
with an alternative interface via
-beginthread and _endthread. If you plan
on calling standard library functions from
within your thread function, it’s
imperative that you use LLIBCMT.LIB.

The Case of printf
The discussion of printf in the main text

illustrates the need for this interface. A
function like printf uses a large internal
buffer for formatting its output string.
Although this buffer is adequate if a single
thread is executing printf’s code, the
outcome is unpredictable if more than one
thread is trying to execute printf at the
same time. There are two ways that printf
can be written to resolve this: you can use
a semaphore to permit only one thread at
a time to execute the code for printf, or you
can use a set of semaphores to allow a
finite number of threads to access printf
simultaneously.

Let’s take a closer look at these two
solutions. With the first method (sketched
in Figure A), a semaphore is set at the
beginning of printf and cleared at the end.
This approach serializes the code for
printf so that only one thread can execute

it at a time. Unfortunately, that means that any time a thread calls
printf, it will block if some other thread is executing the printf code
and will remain suspended until the thread using printf clears the
semaphore. Additionally, there is no guarantee that the next thread
will be allowed to execute printf, nor can the scheduler ensure
which thread that will be. OS/2 cannot guarantee that the next
thread you want to call printf will be the one allowed to execute it
with this approach. Thus, a scenario might develop where a thread
of lesser priority might constantly be preempted by higher priority

Figure A: Sketch of a multithreaded printf, Version 1
void printf(char *fmt, ...)

{
static long printfSem = OL;
static char formatbuffer[BUFSIZ];

DosSemRequest (&printfSem, -IL);

DosSemClear(&printfSem);
}

Figure B: Sketch of a Multithreaded printf, Version 2
#define MAXTHREADS 32
void printf(char *fmt, ...)
{
static long printfSems[MAXTHREADS] =

{ OL, OL, OL, OL, OL, OL, OL, OL, OL, OL,
OL, OL, OL, OL, OL, OL, OL, OL, OL, OL,
OL, OL, OL, OL, OL, OL, OL, OL, OL, OL,
OL, OL];

char formatbuffers[MAXTHREADS][BUFSIZ];
int semno;

for(semno = 0; semno < MAXTHREADS; semno++)
if(’DosSemRequest (&printfSems [semno], OL))

break;
assert (semno < MAXTHREADS);

DosSemClear(&printfSem[semno]);

}

Figure C: Function Protoype for beginthread and _endthread
#include<mt\process.h>
#include<mt\stddef.h>

int cdecl far _beginthread(
void (cdecl far *start_address) (void far *),
void far *stack_end,
unsigned stack_size,
void far *arglist);

void far cdecl _endthread(void)

_BEGINTHREAD OFFERS
MORE OF A C-LIKE

APPROACH TO CREATING
A NEW THREAD.

MARCH 1989

73

from its own call to DosCreateThread and return -1 if the
ID is greater than 32. However, this reveals the use of two
undocumented assumptions about OS/2: that
DosCreateThread will always return the lowest available
thread ID and that OS/2 will reuse thread IDs of
previously terminated threads.

Linking LLIBCMT.LIB
To use _beginthread and its counterpart to DosExit,

_endthread (also shown in Figure C), make sure that the
LLIBCMT.LIB and DOSCALLS.LIB libraries are
available in the current directory or in the directory
pointed to by the LIB variable (in the environment or in
your MAKE file—see the MAKE file for HELLOO.C as
an example). The DOSCALLS.LIB library is required,
since _beginthread, _endthread, and some of the other
library functions will make calls to OS/2 API functions.
LLIBCMT.LIB should be used in place of any other run-
time libraries.

In addition, you may want to change your INCLUDE
variable (again in the environment or in your MAKE file)
to point to the MT directory that the compiler installed
beneath the standard INCLUDE directory. This directory
contains copies of the standard header files and should be
used for creating multithreaded programs. You can set
the INCLUDE variable on the compiler command line
with the /I option as an alternative. Incidentally, the
prototypes for _beginthread and _endthread can be found
in PROCESS.H.

Limitations
Multithreaded code must make several assumptions as

it executes. First, all code and data addresses are expected
to be far. In addition, the code must assume that the data
segment is fixed but should not assume that the stack and
data segments are the same. In addition, conventional
run-time stack checking must be turned off, since it is
taken care of for each thread in a multithreaded program.
You can conveniently use compiler switches to take care
of these concerns by employing the /Alfw and /G2s
options. Also, either the /7A compiler option or the /NOD
linker option should be used to prevent the default library
search by the linker. The MAKE file for HELLOO.C
illustrates this usage and can easily be adapted to compile
and link your own multithreaded programs.

Finally, remember that multithreaded programs
cannot be bound into dual-mode applications since there
is no facility in MS-DOS for simultaneous execution of
multiple threads of code.

threads executing printf—and that can cause undesirable
visual results.

Alternatively, the second method limits the number of
threads that can simultaneously execute the code for a
function like printf. However, it offers no possibility of
collision between threads competing for access to printf’s
code. With this approach (illustrated in Figure B), printf is
structured to provide a fixed set of formatting buffers, with
access to each controlled by a different semaphore.
Consequently, every thread is given its own private buffer
while executing the code. The catch is the limit on the
number of buffers and therefore the limited number of
threads that can gain access.

This limit is one reason _beginthread is provided. The
function offers more of a C-like approach to creating a new
thread by allowing you to pass parameters to the thread and
returning the thread ID when successful. But more
specifically, it restricts the calling process to 32 threads, far
less than the 255 threads that can be created by
DosCreateThread. For many applications, however, 32
threads will be more than enough, allowing the
multithreaded library, LLIBCMT.LIB, to operate on the
assumption that no process will consist of more than 32
threads at a time. For this reason, _beginthread is available
only when you use this library, and you should use it instead
of DosCreateThread when writing a program that uses this
library.

Using _beginthread
How does _beginthread work? From the function

prototype shown in Figure C, you can see that, like
DosCreateThread, it requires the address of a function that
contains the code for the thread. Unlike DosCreateThread,
however, _beginthread takes not the address of the top of the
stack, but the address of a stack area as you would declare it
in your C program (that is, the bottom of the stack).
Therefore you must provide it with the stack size (the third
parameter). Last of all, _beginthread takes a parameter that
makes it more valuable than DosCreateThread in some
cases: an argument parameter for passing arguments to the
thread function itself. An example of this use of
_beginthread can be found in the multithreaded HELLOO.C
program. Finally, you’ll notice that _beginthread itself
returns -1 on error or the thread ID of the new thread.

Obviously, _beginthread must at some point call
DosCreateThread. In fact, it even calls DosCreateThread
when you have exceeded the number of threads allowed by
the multithreaded library. The only way it can limit the
number of threads to a process is to get the thread ID returned

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

series). The chChar member of
the structure will contain the
ASCII value of the key pressed.
The second parameter specifies
how long the function should
wait until the user presses a key.
Finally, passing lO.WAIT will
cause the function to wait for
the key indefinitely, in turn
causing OS/2 to suspend the
calling thread until that thread’s
screen group receives a key
from the user.

Once the user presses a key,
OS/2 will wake up the thread
and return from the KbdCharln
call. The thread then examines
the key and breaks out of the
loop if it is the Esc key, calling
DosExit to terminate the entire
process. You might note that the
thought behind the function is
similar to object-oriented pro-
gramming: the keyboard_thread
function completely encapsu-
lates the keyboard control and
program termination sequence.
The main program doesn’t have
to know how it works or what it
does—that’s taken care of for it
by the thread itself.

A program’s main thread
must be kept alive until all other
thread activity has finished or
can be terminated. When the
main thread dies, the other
threads die. Thus, if you insert
code in the main thread that will
exit the process, the keyboard
thread (and any other threads)
will be destroyed with the main
thread. If a secondary thread like
the keyboard thread shown here
reaches the end of its code with-
out calling a termination rou-
tine, it will die, but it will not
affect other threads. Threads can
explicitly terminate themselves
by means of a call to DosExit:
DosExit(EXIT_THREAD,
term_code);

or a thread can terminate the
entire process via:

DosExit (EXIT_PROCESS,
term_code);

The MAKE file for this

example can be found in Figure
10. The /Gs or /G2s options are
used to turn off standard run-
time stack checking, since the
run-time stack checks will re-
port false stack overflow errors
in code for the thread. If, how-
ever, you wish to isolate this to
the thread code itself, you can
insert a #pragma:
#pragma check_stack(off)
/* thread function is
placed here */
#pragma check_stack(on)

which will turn off run-time
stack checking for the code
inserted between the #pragmas.

If the main thread needs to
close files or shut down other
processes or resources before
terminating, the thread function
could set a semaphore (as a flag)
that could be checked occasion-
ally by the main thread, instead
of terminating outright. Another
alternative would be to use
DosExitList, shown in Figure 11.

Reentrance Issues
There is one important

constraint to consider when
writing multiple-thread pro-
grams. It is the problem en-
countered when more than one
thread tries to simultaneously
execute code that is being used
by another thread. This problem
does not arise with the OS/2 API
functions: their code has been
written for a multitasking envi-
ronment. The standard C library
and your own functions, how-
ever, are another matter.

Consider a scenario like the
following: The standard library
routine printf uses an internal
buffer to format the characters
that it will write to the standard
output. Suppose one thread is in
the middle of executing printf,
with half of the buffer formatted,
when another thread begins to
execute printf’s code, overwrit-
ing the buffer with its own char-
acters—and resulting in chaos.
This behavior is, of course,
intolerable, and unless you’re

going to implement your own
set of semaphores to control the
use of every library routine
(which is not a viable solution),
you’re going to end up with a
mess on your hands.

There are, fortunately, two
solutions to this problem. First,
when writing multithread pro-
grams, refrain from using any
standard library routines in any
but the main thread. This guar-
antees that only one thread will
be using the standard library
routines at a time. With the
exception of a few reentrant
routines, the standard library
routines are not reentrant and are
designed for single-threaded
execution (see Figure 12). If you
must control access to a specific
routine from the standard library
(or one of your own routines),
there are two ways you can do it:

•Use the DosEnterCritSec
API call to temporarily
freeze the other threads.
Although this approach does
work, it isn’t the best solution
and is mentioned here for
informational purposes;
there are too many things that
can go wrong.

• Use a semaphore to control
access to a function. This
solution is more practicable,
since only the threads that
are trying to access the shared
code will be affected—the
rest will continue to execute
(DosEnterCritSec, on the
other hand, will freeze all
other threads).

If you find it impossible to live
without the standard library
functions, there is one additional
alternative: the multithreaded
standard library. While earlier
versions of the C compiler
required that you distinguish
between reentrant and nonreen-
trant functions, Microsoft now
supports a version of the stan-
dard library, LLIBCMT.LIB,
that is completely reentrant and
supports multiple threads. If

74

MARCH 1989

you write programs that use
this library, you must use the
new _beginthread and _endthread
functions that are contained in
the l i b r a ry (i n s t ead of
using DosCrea t eThread and
DosExit) . (For more infor-
mation, see the sidebar “Using
the .Mul t i threaded Library:
DosCreateThread vs. _beginthread.”)

Finally, you can write your
own functions to accommodate
multiple threads. If you choose
to do so, there are at least three
key guidelines to follow. First,
multithreaded functions cannot
disable interrupts or issue an
INT instruction. Second, they
should not alter the contents of a
segment register or perform seg-
ment manipulations. Last, there
must be strict controls on access
to global or static data by func-
tions that can be called by mul-
tiple threads (alluded to earlier
in the discussion of the standard
library printf routine). The pre-
ferred mechanism for incorpor-
ating these controls into your
program is OS/2 semaphores.

Thread Control
A detailed discussion of the

use of OS/2 semaphores can be
found in “Using OS/2 Sema-
phores to Coordinate Concur-
rent Threads of Execution,”
MSJ (Vol. 3, No. 3), but we
will briefly reiterate some of the
points made in that article that
are pertinent here.

Although OS/2 offers several
facilities for interprocess com-
munication (pipes, queues, sig-
nals, and shared memory),
semaphores are the preferred
method of coordinating multiple
threads. You can use them to
serialize access to pieces of code
or resources that cannot be
shared. Alternatively, you can
use semaphores when you need
to have one thread signal to
another that an event has
occurred. Of the several types of
semaphores OS/2 offers, RAM
semaphores (used by threads in

abs labs memset strcmpi stmset
atoi Ifind mkdir strcpy strrchr
atol Isearch movedata stricmp strrev
bsearch memccpy putch strlen strset
chdir memchr rmdir strlwr strstr
getpid memcmp segread stmcat strupr
halloc memcpy strcat stmcmp swab
hfree memicmp strchr stmicmp tolower
itoa memmove strcmp stmcpy toupper

| Figure 12 The following routines in the Microsoft C Standard Library
are reentrant and can be called by more than one thread of a multithreaded
process simultaneously.
#define INCL_DOS
#define INCL_SUB
#include<stdio.h>
#include<process.h>
#include<os2.h>

#define ESC Oxlb
#define TRUE 1

void keyboard__thread(void);
void main(void);

#define THREADSTACK 512

char keythreadstack[THREADSTACK];
long CountSem = 01;
unsigned count = 0;

void main(void)
{
TID threadid;

DosSemClear(&CountSem);

if(DosCreateThread(keyboard_thread,&threadid,
&keythreadstack[THREADSTACK-1]))

exit(-1);

while(TRUE) /* insert code for main program here */
{
DosSleep(100L);
DosSemRequest(&CountSem,-IL);
if(count > 3)

break;
DosSemClear(SCountSem);
}

}

void keyboard_thread(void) /* keyboard thread code */
{
KBDKEYINFO keyinfo;

while(TRUE)
{
KbdCharln(&keyinfo,IO_WAIT,0); /* wait for keystroke */
if(keyinfo.chChar ESC) /* if ESC pressed, break */

{
DosSemRequest(&CountSem,-IL);
count++;
DosSemClear(SCountSem);
1

1
DosExit(EXIT_PROCESS,0); /* terminate the process */
}

The keyboard scan program from
Figure 8 is modified by using semaphores .

Figure 13

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 14: HELLOO.C— A Multithreaded Version of HELLO.C
the same process) are the sim-
plest to implement and are the
easiest to deal with in terms of
our first multithreaded program.

The MS-DOS operating sys-
tem is a single-tasking environ-
ment: only one thread operates
at a time. A program executing
under DOS has considerable
control over a resource, includ-
ing the ability to disable inter-
rupts and ensure uninterrupted
access to it. Signaling between
processes in the DOS environ-
ment is easy, since a global
variable or flag can be used to
coordinate different pieces of
code. You can have one process
wait while the flag is set, that is,
until another process clears the
flag. Once the flag has been
cleared, the process continues,
setting the flag for itself, safe in
the knowledge that it alone has
access to a particular resource,
including the flag variable used
for signaling.

Under OS/2, this type of sig-
naling is not possible, since
there is no way (without con-
trols) to guarantee the order in
which threads will execute. Fur-
ther, one thread may be reading
a flag while another may be set-
ting or clearing it, or a second
thread might end up setting the
flag between the moment that
the first thread stopped waiting
and began to set the flag itself.
Therefore, more than one thread
might end up with access to the
same resources. The outcome of
such a situation is predictably
disastrous. Furthermore, contin-
ually checking the value of such
a flag uses the CPU unneces-
sarily, lowering the efficiency of
the system.

Semaphores provide an ele-
gant alternative solution to these
problems in the context of the
OS/2 multitasking environ-
ment. In one uninterruptible step
a semaphore kernel call can test
and set a semaphore. Thus, the
semaphore controls access to a
shared resource and allows one

76
/* os2hello.c by RHS, 10-14-88

* OS/2 and 1988 version of K&R's hello.c
* demonstrates multiple threads
*/

/*
This program provides an introduction to the use of threads and
semaphores under OS/2. It divides the screen up into a series of
logical frames. Each frame is a portion of the screen that is managed
(written to) by a single thread. The exact number of frames will
depend on the current screen length (25, 43 and 50 lines). Each thread
has its own data from which it knows where the frame can be found on
screen. This includes a semaphore which signals the thread when to
proceed. These elements can be found in the FRAME data type.

Upon receiving a signal from its semaphore (i.e., the semaphore has
been cleared), the thread either draws a message on the frame or
clears the frame, and reverses the flag that determines this. Then it
again blocks until its semaphore has been cleared again.

The main program thread starts by setting up the frame information:
checking the screen size, determining the number and size of the
frames. It also "randomly" selects the order in which the frames will
appear.

Then it sets each thread's semaphore and initiates each thread
(remember the threads will block until their semaphores are cleared.

Finally, the main program goes into an infinite loop, clearing each
thread's semaphore, sleeping for at least 1 millisecond, and then
continuing to the next thread. Thus the threads asynchronously call
the VIO subsystem to draw or clear each frame, while the main program
thread continues.

An optional parameter can be passed to set the number of milliseconds
passed to DosSleep, allowing the operator to more accurately "see" the
order in which the frames appear/erase. This value must always be at
least 1 to allow the main program thread to give time to the CPU
scheduler.

A call to _beginthread() early in main() sets up a thread to monitor
keyboard input. This thread blocks until a key is pressed, then
examines the key, and if the key is the Escape Key (27 decimal or
IbH), the thread calls DosExit to kill the whole process.
*/

#define INCL__SUB
#define INCL_DOSPROCESS

#include <os2.h>
#include <mt\stdio.h>
#include <mt\string.h>
#include <mt\assert.h>
#include <mt\stdlib.h>
#include <mt\process.h>

#if !defined(TRUE)
#define TRUE 1
#endif

#if ’defined(FALSE)
#define FALSE 0
#endif

#define LINES25 4 /* height in lines of frames*/
#define LINES43 6
#define LINES50 7

#define MAXFRAMES 28 /* limited to max frames possible */
#define RAND() (rand() % maxframes);
fdefine THREADSTACK 400 /* size of stack each thread*/
#define IDCOL 15
#define ESC Oxlb

MARCH 1989

blanking

>_str50[LINES50+1]

unsigned

ULONG

>_t bread(FRAME fa
>ard_thread(void)

VIOMODEINFO

task to signal another that an
event has occurred.

To demonstrate a simple use
of semaphores, suppose we
added a facility to the keyboard
thread program shown in Figure
8. This facility causes the key-
board thread to increment a
counter every time the user
presses the Esc key (instead of
terminating the program). The
main thread looks at the counter
periodically, and as soon as the
counter is greater than a certain
value (say, 3), the main thread
will terminate the program.

The problem in OS/2’s multi-
threaded environment concerns
the serialization of a resource,
specifically the counter variable
that more than one thread may
be sharing. Here’s where the
semaphore comes in: by using a
semaphore, we can serialize the
access to the counter variable, so
that only one thread at a time
actually reads or writes it.

The revised listing, shown in
Figure 13 (it uses the same
MAKE file mentioned earlier
and shown in Figure 10) illus-
trates the solution. It creates a
semaphore variable, CountSem,
which the main thread clears
with the call to DosSemClear.
The while loop has been
expanded to handle the reading
of the counter variable. The
main thread sleeps for 100 milli-
seconds (about three 32-milli-
second time slices), then calls
DosSemRequest to gain access
to CountSem. The -IL param-
eter causes the function to block
the calling thread until the sema-
phore has been cleared—that
way it will not be able to access
the counter variable if the key-
board thread has already gained
control.

Next, the main thread evalu-
ates the counter thread, breaks
out of the loop, and terminates
the program if the counter is
greater than 3. Otherwise, it
clears the semaphore (giving up
ownership of the resource, the

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

keyboard

THREADSTACK, NULL)

LINES25;

50:

LINES50

numlines)

MAXFRAMES)

FALSE;

RAND();

>_cleared)

frames[i] empty

maxcols)

RAND ();

78
counter variable) and returns to
the top of the loop. Note that the
call to DosSleep suspends the
current thread, allowing OS/2 to
give CPU time to threads of the
same or greater priority. With-
out the call to DosSleep, the
thread would attempt to run in a
continual loop, unnecessarily
burning CPU time. Note, too,
that the keyboard thread does
not require DosSleep: the
I0_WAIT parameter to
KbdCharln blocks that thread
until there is keyboard input
available.

The keyboard thread code
also uses the CountSem sema-
phore to gain access to the
counter variable. Every time the
user presses the Esc key, the
keyboard thread requests access
to the semaphore, blocking until
the semaphore has been cleared.
Then it increments the counter
variable and clears the sema-
phore. Again, this mechanism
prevents it from accessing the
counter variable at the same
time as the main thread. Thus,
access to the counter variable
has been serialized and the
activity of the two threads has
been synchronized. From this
simple example, we can now
move to something a little more
complex: a multithreaded ver-
sion of HELLO.C.

A Multithreaded HELLO.C
The multithreaded version of

HELLO.C is designed to help
illustrate the use of threads and
semaphores for serializing
access to and controlling
resources. Whereas the original
HELLO.C simply printed a
message on the screen and ter-
minated, HELLOO.C (shown in
the listing in Figure 14), logically
subdivides the screen into
frames and prints the message in
each frame. The program
assigns each frame a thread that
is responsible for writing and
clearing the message. The
program’s threads continue to

MARCH 1989

Figure 14
if(i >= maxframes)

(
i -= maxframes;
loops++; /* keep track of #

of frames*/
}

}

write and clear their messages
until the user presses the Esc
key. This frame-based format
will be the basis for other
example programs as we
explore the OS/2 subsystems
and other facilities in later
articles in this series.

Each frame’s thread receives
a pointer to the frame’s data
structure, which contains the
information the thread will use
during the course of the pro-
gram. This structure includes
the frame’s row/column coordi-
nates, the thread’s ID (returned
from _beginthread), a sema-
phore that the main program
thread will use to activate the
thread, and the thread’s stack.
Exactly how many frames will
appear on the screen depends on
the screen mode when you run
the program (25, 43, or 50 lines).

HELLOO.C can take one
optional command-line argu-
ment: the number of millisec-
onds that the main thread should
sleep between each activation of
a frame thread. This argument
allows you to slow down the
visual activity deliberately so
that you can see what’s happen-
ing a little more clearly. The
command-line parameter,
stored in a variable called sleep-
time, defaults to 1 millisecond,
which the DosSleep kernel
function will round up to 32
milliseconds—the minimum
OS/2 time slice. It also prevents
HELLOO.C from hogging too
much CPU time. You might try
running the program with a
parameter of 50, 100, 500, or
1000 (the equivalent of 1
second) to get a better idea of
what’s happening.

The program begins by
checking the command-line
parameter and then calls
_beginthread to spin off a key-
board thread, which blocks until
keyboard input is received and
terminates the program when
the user presses the Esc key. The
code for this thread is lifted

79

for(i = 0 ; i < maxframes; i++) /* start a thread
for each */

{
DosSemSet(&frames[i]->startsem); /* initially set

each sem. */

/* start each thread */

if((frames[i]->threadid « _beginthread(
(void far *)hello_thread,
(void far *)frames[i]->threadstack,
THREADSTACK,
(void far *)frames[i])) == -1)

{
maxframes = i; /* reset maxframes on failure */
break;
}

}

while(TRUE) /* main loop */
{

/* swing thru frames, signalling to threads */

for(i = 0; i < maxframes; i++)
{
DosSemClear(iframes[i]->startsem); /* clear: thread

can go */
DosSleep(sleeptime); /* sleep a little */
}

}
}

void hello_thread(FRAME far *frameptr) /* frame thread
function */

{
register char **p;
register int line;
int len = strlen(*helloptr);
unsigned row, col = frameptr->col;
char idstr[20];

while(TRUE)
{
DosSemRequest(&frameptr->startsem,-IL); /* block until

cleared */
itoa(frameptr->threadid,idstr,10); /* init idstr */

row = frameptr->row; /* reset row */

if(•frameptr->frame_cleared) /* if frame in use, erase */
for(line « 0; line < numlines; line++, row++)

VioWrtCharStr(blank_str,len,row,col,0);
else /* else frame not in use */

{
p = helloptr; /* print message */
for(line = 0; **p; line++, row++, p++)

VioWrtCharStr(*p,len,row,col,0);

/* write id # in frame */

VioWrtCharStr(idstr,3,

MTi l i l hWl j iM

MARCH 1989

MICROSOFT
SYSTEMS
JOURNAL

row-(numlines/2),
IDCOL+col, 0);

)

Figure 14

80
which takes one parameter: the
address of the thread’s FRAME,
which is passed to it by means
of _beginthread. The FRAME
thread code is structured around
a loop, at the top of which is a
call to the DosSemRequest
kernel function. By passing the
address of a semaphore and a -1
to this function, the calling
thread blocks until the sema-
phore clears. Thus, each thread
is idle until the main thread
clears its semaphore.

Once activated, a FRAME
thread will either clear or write
its message, depending on a
variable that is toggled every
time the thread is active. Note
that the VIO subsystem func-
tion, VioWrtCharStr, performs
all video output and writes a
specific number of characters
from a string at a specific row/
column coordinate on screen.
An example of a FRAME
thread’s output is shown in
Figure 15.

As mentioned earlier, the pro-
gram will continue until the user
presses the Esc key. At that time,
the keyboard thread will wake
up (it’s been blocked in the
absence of keyboard input) and
terminate the program.

HELLOO.C is p robab ly
multithreaded overkill (how
many times will you need to run
as many as 25 threads in an
application?), but it should get
you off to a strong start and
clarify the multithread issues
addressed in the article. With
this foundation, you’ll be able to
write some rather complex pro-
grams that use multiple threads.
Indeed, program development
will become even more inter-
esting in the next issue, when we
explore the VIO subsystem.

/* toggle use flag */

framept r->frame__cleared = !frameptr->frame_cleared;
}

}

void keyboard__thread(void)
{
KBDKEYINFO keyinfo;

while(TRUE)
{
KbdCharln(&keyinfo, IO_WAIT, 0); /* wait for keystroke */
if(keyinfo.chChar == ESC) /* break if ESC pressed */

break;
}

DosExit(EXIT_PROCESS, 0); /* terminate process */
}

/* end of helloO.c */

each screen frame, assigning the
appropriate row/column coordi-
nates. Consequently, the frames
will seemingly appear and dis-
appear in a random order,
although the order remains
static throughout the program.

The real fun in HELLOO.C
begins when the main thread
calls DosSemSet for each
FRAME, followed by a call to
_beginthread to start the
FRAME’S thread (which will
block until the semaphore
clears). Finally, the main thread
enters a loop where it stays for
the remainder of the program. In
this loop, it activates the thread
for each FRAME by clearing the
FRAME semaphore. The call to
DosSleep suspends the thread,
forcing it to give up some CPU
time before activating the next
thread. The main thread will do
this for every FRAME and then
repeat the process. Adding calls
to DosSleep when a thread is in
a loop will make the program
more efficient, since it elim-
inates a thread’s ability to waste
CPU time.

What does each FRAME
thread do? The code for each
FRAME thread is contained in
the hello_thread function,

Figure 15 Each frame of Hello, shown
here running in a Presentation Manager text
window, is created by an additional thread and
is controlled by OS/2 RAM semaphores.

directly from the earlier key-
board thread example, shown in
Figure 8. Next the main thread
goes through several house-
keeping and preparatory steps:
it obtains the video mode
through a call to VioGetMode,
sets up for the number of lines on
the screen, and calculates the
maximum number of frames to
display. Then it allocates and
initializes the frame structures
(FRAME data types) and ran-
domly chooses a FRAME for

MARCH 1989

MSJ Source
Code Listings

All our source code
listings can be found
on Microsoft OnLine,

CompuServe®, and
two public access

bulletin boards. On
the East Coast,

users can call
(212) 889-6438 to

join the RamNet
bulletin board.

On the West Coast,
call/415) 284-9151

for the ComOne
bulletin board. In

either case, look for
the MSJ directory.

Communications
parameters for public

access bulletin
boards: 1200 Baud

(RamNet also 2400),
word length 8, 1 stop

bit, full duplex,
no parity.

Microsoft Corporation assumes
no liability for any damages
resulting from the use of the
information contained herein.

Microsoft, the Microsoft logo,
MS, MS-DOS, and XENIX are
registered trademarks of
Microsoft Corporation. IBM is a
registered trademark of
International Business Machines
Corporation. Finder is a
trademark of Apple Computer,
Inc. Apple, LaserWriter, and
Macintosh are registered
trademarks pf Apple Computer,
Inc. PostScript is a registered
trademark of Adobe Systems,
Inc. AT&T and UNIX are
registered trademarks of
American Telephone &
Telegraph Company.
CompuServe is a registered
trademark of CompuServe, Inc.
Intel is a registered trademark of
Intel Corporation. Helvetica,
Linotronic, and Times are
registered trademarks of
Linotype Corporation and its
subsidiaries. Lotus and 1-2-3 are
registered trademarks of Lotus
Development Corporation. The
Whitewater Group is a registered
service mark of The Whitewater
Group. Actor is a registered
trademark of The Whitewater
Group.

Microsoft 000-000-225

